
Sofia University St. Kliment Ohridski
Faculty of Mathematics and Informatics

Department of Mathematical Logic and Its Applications

Master Thesis

The College Admissions problem with quotas transfer

Stefan Plamenov Fotev
Logic and Algorithms (Mathematics)

Faculty number: 25310
Sofia, 2019

Advisor:
Chief assistant, PhD Stefan Gerdjikov
Supervisor:
Chief assistant, PhD Georgi Georgiev
Department Chair:
Associate professor, PhD Hristo Ganchev

The College Admissions problem with quotas transfer

Stefan Fotev

May 16, 2019

Abstract

A different approach to the already classical College Admissions (Hospitals/Residents)
problem is described. The approach is motivated by the current students ranking system
used in Sofia University. It often happens that some programs are more desirable than others
and this results in a certain number of unused quotas. It is natural to consider transferring
such quotas to other programs that are in some sense similar to the less desired programs.

What is presented is an extension of the conditions defining a stable ranking with respect
to quotas transfer rules and applicant-oriented algorithm for finding such ranking.

1 Introduction and history

The College Admissions (Hospitals/Residents) problem was first introduced by Gale and
Shapley [1]. The name ”(Hospitals/Residents)” comes from another text about this topic by
Roth [2]. These are the initial papers where the so called stable ranking is defined and proven
existence of. They further provide efficient algorithms to find applicant-oriented and college-
oriented rankings while examining both the socio-economical and the purely theoretical aspects
of the problem.

Since then such matching schemes have been applied in many countries to rank not only
students but also other professionals. Some notable papers that provide background results for
this and other researches are by Gusfield and Irving [3] and Roth and Sotomayor [4].

A paper that is focused on the theoretical properties of the stable rankings and providing a
formal criteria for a practical selection of such ranking is for instance by Bäıoua and Balinski [5].

Another interesting paper in the topic is by Biró, Fleiner, Irving and Manlove [6]. It is focused
on instances of the problem where some programs have a minimal number of students that must
be assigned to or several programs have restrictions on the total number of assigned students.
It turns out that in general the existence of stable rankings in these cases is an NP-complete
problem.

1.1 Definition of the problem

The definition of the problem as presented here includes two finite sets of objects - a set of
students S = {s1, ..., sn} and a set of programs P = {p1, ..., pm}.

There is a quotas function q : P → N, that indicates the maximum number of students that
can be assigned to the corresponding program. We will refer q(p) as the quotas for program p.

There is a wishes function, defined as

λ : S →
∞⋃
k=1

(P × Z)k

1

and having the property that all left sides of the components of λ(s) are unique within that
tuple for all s. We will refer λ(s) as the list of desired programs for student s or just the list of
s. We will denote the total number of such wishes or

∑
s∈S length(λ(s)) with Dλ.

Each wish consists of ordered pair of a program and a result of the corresponding student
for that program. Informally this is the criteria by which a candidate can be assigned instead of
another candidate. This criteria is usually based on a predefined total order among the relevant
candidates for all programs. In our terms this is equivalent with assuming that all such results
for a given program are unique. However we do not assume such restrictions and will allow ties
between candidates, hence considering more general problem.

The index of a program in a list indicates the preferences of the corresponding candidate, so
that more desirable programs are at lower indexes than less desirable programs. The assump-
tion that these programs are unique within each list implies that the candidate preferences for
programs are indeed totally ordered, in contrast with the program preferences for candidates.

Definition 1: Given an instance I = 〈S, P, q, λ〉, a stable ranking for I is a partial function
F : S → P , satisfying the following conditions:

• If F (s) = p, then p exists in the list of s and for all programs r with lower index in that
list: |F−1(r)| ≥ q(r) and the result of s for r is less than min(r)

• If F (s) is undefined, then for all programs p in the list of s: |F−1(p)| ≥ q(p) and the result
of s for p is less than min(p)

• If |F−1(p)| > q(p), then min(p) = the q(p)-th greatest result for p among F−1(p)

Here F−1(p) is the set of all students s, such that F (s) = p and min(p) is the minimal result
for p among F−1(p) or ∞ in case this set is empty.

Also in the context of F we will refer F−1(p) as the ranking for program p.

The first two conditions define the stability (or fairness) property, hence the name stable
ranking. These conditions say that if someone is assigned to a particular program, they have no
chance of being assigned to any of their more desirable programs because these programs are full
and the result of the student for any of them is not sufficient. The same holds if the student is
not ranked at all.

The third condition is only affecting ties between equally preferable candidates. It says that
the number of assigned students can exceed the quotas only if all exceeding candidates have the
same result as the last candidate that is within the quotas (note that ”exceed” and ”last” are
with respect to the program preferences). In such cases we will say that all candidates that share
this minimal result are trailing.

Problem 1: Given an instance I = 〈S, P, q, λ〉, does there exist a stable ranking for I?

We now consider an example instance of this problem:

S = {Albert, Jane, Peter}
P = {History, Physics}

q = {〈History, 1〉, 〈Physics, 1〉}
λ = {〈Albert, [(History, 4), (Physcis, 10)]〉, 〈Jane, [(Physics, 4), (History, 10)]〉,

〈Peter, [(History, 4)]〉}

2

A stable ranking for I = 〈S, P, q, λ〉 is the following function:

F = {〈Albert,History〉, 〈Jane, Physics〉, 〈Peter,History〉}

As we see all stable ranking conditions are satisfied. Note that Albert and Peter are both
assigned to History, although this program has only one quota. This is an example of trailing
candidates.

However this stable ranking is not unique. Consider the function:

G = {〈Albert, Physics〉, 〈Jane,History〉}

G also satisfies the conditions, although it is completely different from F . This small example
shows that the provided conditions are not sufficient to uniquely determine a stable ranking. If
we examine F and G we will see two opposing ranking tendencies. In F the candidates were
ranked on their most desired program, while in G they were ranked in such way that programs
assigned the best candidates.

A stable ranking is called applicant-oriented if it follows the first tendency and college-oriented
if it follows the second tendency. This definition is strictly informal. Also there might be rankings
that follow one of the tendencies for some programs and the other for other programs.

However there are two ranking strategies that either follow the first or the second tendency
over all programs. In practical examples they often construct the same ranking.

1.2 Algorithm constructing applicant-oriented ranking

Algorithm 1 Applicant-oriented ranking

1: procedure Ranking(S, P, q, λ)
2: Set all students to Unfinalized and Non-ranked
3: Let c(p) denote the number of students ranked in program p
4: Let µ(p) denote the minimal result of a student ranked in program p
5: while there exists an Unfinalized student s do
6: Let p be the first program in the list of s for which s has not applied yet
7: if p is undefined then
8: Set s to Finalized
9: continue

10: Now s applies for p
11: if c(p) < q(p) or the result of s for p is ≥ µ(p) then
12: Rank s to p
13: if c(p) > q(p) and µ(p) < the q(p)-th greatest result in p then
14: Set all students in p sharing µ(p) to Unfinalized and Non-ranked

15: Set s to Finalized

In terms of the stable ranking function F ”Rank s to p” means set F to be F \ {〈x, y〉 ∈
F |x = s} ∪ {〈s, p〉} and ”Set s to Non-ranked” means set F to be F \ {〈x, y〉 ∈ F |x = s}.

If we start with F = ∅ and consider the above remarks at the end of the while-loop F will
be the desired stable matching function.

3

Why is this procedure correct?
The key observation is that once the quotas for a particular program are full, from then on

the current minimal result for it cannot decrease. If someone is declined it means that quotas
are full and their result is currently not sufficient for ranking, so by the previous statement their
result will further be not sufficient. Thus we don’t need to consider this application anymore (line
10). When someone is accepted it may happen that the minimal result rises so that candidates
that were previously trailing are not trailing anymore and they must be declined (lines 13 and
14). If all desired programs decline a candidate, then they are non-ranked with no chance of
progress and hence finalized (line 8).

It follows that whenever the procedure reaches line 5, the currently constructed function F
satisfies the stable ranking conditions restricted to currently finalized candidates and everyone
who is unfinalized has no chance of assignation to any program they have already applied for. It
also follows that at some point all candidates will be finalized which completes the correctness.

To see that this algorithm is applicant-oriented note that every candidate is tried to assign
with respect to their order of desired programs.

What is the running time of this procedure?
Let Q be the largest quotas number among all programs.
An efficient implementation includes storing the ranking for program p in multi-map data

structure with results being the keys and students being the values, for instance AVL tree map-
ping result to list of students, sharing this result. We keep track of µ - the lowest key and m -
the number of elements with that key. We delete all values with key µ when all elements in the
structure become ≥ q(p) + m. This indicates an increase in the minimal result while there are
candidates exceeding the quota (maybe they were previously trailing), so they should be removed
and reconsidered. Such structure can achieve O(log(min{Dλ, Q})) running time for any single
insertion, deletion and updating µ and m operation, since we never search if any key-value pair
already exists in the map. It is also easy to see that every student can be ranked no more than
once and removed no more than once for any of their desired programs.

This guarantees O(Dλ logDλ) running time of the procedure.

1.3 Algorithm constructing college-oriented ranking

Algorithm 2 College-oriented ranking

1: procedure Ranking(S, P, q, λ)
2: Set all programs to Unfinalized
3: Set all students to Non-ranked
4: while there exists an Unfinalized program p do
5: With respect to q(p) and trailing candidates take the most preferable students who:
6: 1) have p in their list and are non-ranked
7: 2) have p in their list and are ranked at less desirable program
8: Set all programs considered at point 2) to Unfinalized
9: Rank all taken students to p and set p to Finalized

Let T be a set of taken students. In terms of the stable ranking function F ”Rank all taken
students to p” means set F to be F \ {〈s, y〉 ∈ F | s ∈ T} ∪ (T × {p}).

If we start with F = ∅ and consider the above remark at the end of the while-loop F will be
the desired stable matching function.

4

Why is this procedure correct?
The key observation is that once someone is ranked at a particular program, from then on

they can only move to programs they prefer more than their current one. Thus if someone is
moved because of line 7, next time we consider their old program, we will not take this candidate.
Since the set of possible candidates cannot expand at some point the ranking for any program
will either stabilize or become ∅. In both cases there is a point after which the program will
remain finalized and so at some point all programs will be finalized.

Now if student s is not assigned correctly by first or second condition because of program
p, then they were not chosen properly on line 5 when p was eventually finalized which is a
contradiction. Also this selection process guarantees that the third condition is satisfied which
completes the correctness.

To see that this algorithm is college-oriented note that every candidate is tried to assign with
respect to the preferences of the programs.

What is the running time of this procedure?
An efficient implementation includes presorting by highest result all wishes in the correspond-

ing programs. We keep track of the index i of the last ranked student in this sorted order and
a special number q called quotas balance. Initially i is -1 and q is all quotas for the respective
program. When we analyze a program we search for relevant candidates after i and decrease q for
every accepted candidate while q > 0 or there are trailing candidates (remark that at some point
q might become negative). We then adjust i accordingly and thus we consider every students’
wish no more than once. Also whenever we detect students that are advancing by point 2) we
increase the quotas balance of their previous program, indicating that they might have released
a quota. We can decide if some is advancing in time O(logDλ) by storing the wishes of each
student in map data structure with programs being the keys and the corresponding indexes in
the list being the values.

This guarantees O(Dλ logDλ + |P |) running time of the procedure.

The running time of O(Dλ logDλ) is not surprising. Assuming the remarks for efficient im-
plementations both algorithms can be extended so that they report the rankings for all programs
sorted by highest result for time O(Dλ + |P |).

In the applicant-oriented algorithm we just need to report a rightChild-root-leftChild traversal
of the multi-maps in case they indeed are implemented as AVL trees.

In the college-oriented algorithm we already have the sorted lists so we just need to report
each list up the i-index while skipping candidates that are ranked in another program.

It follows that to sort an integer array {a1, ..., an} in reverse we can modify both algorithms
and extend their complexity by O(n) to report a sorted ranking for I = 〈S, P, q, λ〉 where:

S = {s1, ..., sn}
P = {p}

q = {〈p, n〉}
λ = {〈s1, [(p, a1)]〉, ..., 〈sn, [(p, an)]〉}

Thus O(Dλ logDλ) is a tight upper bound for finding a stable ranking.

We can now state the following theorem, which we just presented the proof of:

5

Theorem 1: Given an instance I = 〈S, P, q, λ〉, there exists a stable ranking for I. Also there
exist both applicant-oriented and college-oriented algorithms to find such ranking and report the
corresponding program rankings sorted by highest result for time O(Dλ logDλ + |P |). In the
general case there are no faster algorithms with the same properties.

2 Quotas transfer between pairs of programs

For a practically arising instance of the College admissions problem it may happen that
there are programs that have less applications than quotas. It may also happen that there are
programs sharing a common set of candidates, while one of them is significantly more desirable
than the others. Both cases lead to a ranking in which there are programs with unused quotas.
It is reasonable to consider transferring these quotas to other, more desired programs. In terms
of ranking tendencies this process is applicant-oriented. Increasing the quotas usually leads to
higher number of applicants assigned to better programs in their lists, which further leads to
overall decrease in the minimal results needed for assignation.

Transferring unused quotas can also have purely social or economical benefits, both in terms
of university income and student opportunities. This indeed happens in the application process
for Sofia University.

We now consider a simple extension of the standard College admissions problems that allows
transfer of quotas between pairs of programs.

2.1 Definition of the problem

Along with students S, programs P , quotas function q and wishes function λ, we have a
pairing table Π ⊂ P(P), such that every set in Π has exactly two elements and every program
belongs to exactly one element of Π.

Informally Π indicates pairs of programs that can transfer unused quotas between each other.
We will call such programs dual and denote the dual program of p by ∂p, so {p, ∂p} ∈ Π and
∂∂p = p.

Often in practice p and ∂p are exactly the same university program, though not the same
program during the ranking process. This separation can be based on different reasons. For
instance male-female candidates, regular-part time education form, state-paid quotas and other.

Definition 2: Given an instance J = 〈S, P, q, λ,Π〉, a stable ranking for J is a partial function
F : S → P , satisfying the following conditions:

• If F (s) = p, then p exists in the list of s and for all programs r with lower index in that list:
|F−1(r)| ≥ q(r) + max{0, q(∂r)− |F−1(∂r)|} and the result of s for r is less than min(r)

• If F (s) is undefined, then for all programs p in the list of s: |F−1(p)| ≥ q(p)+max{0, q(∂p)−
|F−1(∂p)|} and the result of s for p is less than min(p)

• If |F−1(p)| > q(p) + max{0, q(∂p)− |F−1(∂p)|}, then min(p) = the q(p) + max{0, q(∂p)−
|F−1(∂p)|}-th greatest result for p among F−1(p)

Again F−1(p) is the set of all students s, such that F (s) = p and min(p) is the minimal
result for p among F−1(p) or ∞ in case this set is empty.

6

We now have less strict conditions for someone to be assigned, thus more strict to be declined,
since not only the corresponding program must be full, but also its dual should not be able to
transfer a quota. Also ties are now treated in a less strict manner, since trailing candidates are
considered after the number of transferred quotas (max{0, q(∂p)−|F−1(∂p)|}) is taken in mind.

Problem 2: Given an instance J = 〈S, P, q, λ,Π〉, does there exist a stable ranking for J?

According to the definition of Π, every program must have a dual one. For each program p
that we don’t want to transfer quotas with, we can introduce a new dummy program p′ with
quota 0 and consider p and p′ as dual. In the same way we can reduce an arbitrary instance of
the standard problem to an instance of this problem, which makes the second more general.

2.2 Algorithm constructing applicant-oriented ranking

Algorithm 3 Applicant-oriented ranking with quotas transfer between pairs of programs

1: procedure Ranking(S, P, q, λ,Π)
2: Set all students to Unfinalized and Non-ranked
3: Let c(p) denote the number of students ranked in program p
4: Let t(p) denote the number of quotas transferred by program p
5: Let µ(p) denote the minimal result of a student ranked in program p
6: while there exists an Unfinalized student s do
7: Let p be the first program in the list of s, for which s has not applied yet
8: if p is undefined then
9: Set s to Finalized

10: continue
11: Now s applies for p
12: if c(p) < q(p) then . there are still unused quotas
13: Rank s to p
14: if c(p) + t(p) > q(p) then . we must take a quota back
15: Now p takes back a quota from ∂p
16: Let x = q(∂p) + t(p)
17: if c(∂p) > x and µ(∂p) < the x-th greatest result in ∂p then
18: Set all students in ∂p sharing µ(∂p) to Unfinalized and Non-ranked

19: Set s to Finalized
20: else if c(∂p) + t(∂p) < q(∂p) then . ∂p can transfer a quota
21: Now ∂p transfers a quota to p
22: Rank s to p
23: Set s to Finalized
24: else if the result of s for p is ≥ µ(p) then
25: Rank s to p
26: Let x = q(p) + t(∂p)
27: if c(p) > x and µ(p) < the x-th greatest result in p then
28: Set all students in p sharing µ(p) to Unfinalized and Non-ranked

29: Set s to Finalized

Again in terms of the stable ranking function F ”Rank s to p” means set F to be F \{〈x, y〉 ∈
F |x = s} ∪ {〈s, p〉}, while ”Set s to Non-ranked” means set F to be F \ {〈x, y〉 ∈ F |x = s}.

7

If we start with F = ∅ and consider the above remarks at the end of the while-loop F will
be the desired stable matching function.

Why is this procedure correct?
The key observation is that once all quotas for a program p are used by p and ∂p cannot

transfer more quotas, from then on the current minimal result for p cannot decrease. It can alter
by two reasons: someone is ranked in p with result higher than the current minimum or ∂p takes
back a quota. In both cases the result either stays the same (trailing candidates) or increases. If
someone is declined it means that all quotas are used by this program, the dual program cannot
transfer more quotas and the result of the candidate is currently not sufficient for ranking, so by
the previous statement their result will further be not sufficient. Thus we don’t need to consider
this application anymore (line 11). If all desired programs decline a candidate, then they are
non-ranked with no chance of progress and hence finalized (line 9).

All other steps are only needed to ensure that whenever the procedure reaches line 6, the
currently constructed function F satisfies the stable ranking conditions restricted to currently
finalized candidates and everyone who is unfinalized has no chance of assignation to any program
they have already applied for. It also follows that at some point all candidates will be finalized
which completes the correctness.

What is the running time of this procedure?
As in the previous problem an efficient implementation includes storing the ranking for pro-

gram p in multi-map data structure and keeping track of the lowest key and the corresponding
number of elements. We also keep track of t(p) and c(p) for all p (they are initially 0), so again
we achieve O(1) for making a decision and O(logDλ) for updates.

Since every student can be ranked no more than once and removed no more than once for
any of their desired programs we have O(Dλ logDλ) running time for the whole procedure.

2.3 On constructing college-oriented ranking

Consider the instance J = 〈S, P, q, λ,Π〉, where:

S = {Thomas,Melanie,Martin}
P = {Philosophy,Biology}

q = {〈Philosophy, 1〉 〈Biology, 2〉}
λ = {〈Thomas, [(Philosophy, 10)]〉, 〈Melanie, [(Biology, 10)]〉,

〈Martin, [(Philosophy, 9), (Biology, 9)]〉}
Π = {〈Philosophy,Biology〉}

It cannot be determined which of the following stable rankings is more acceptable for the
university:

F = {〈Thomas, Philosophy〉, 〈Melanie,Biology〉, 〈Martin, Philosophy〉} and

G = {〈Thomas, Philosophy〉, 〈Melanie,Biology〉, 〈Martin,Biology〉}

It turns out that the conditions that we described to define a stable ranking are not sufficient
to construct a purely college-oriented ranking. In some sense this is expected since as we already

8

discussed the quotas transfer is an applicant-oriented process. We can however add some further
restrictions to λ, so that we can indeed construct such ranking.

Suppose J = 〈S, P, q, λ,Π〉 is an instance of the problem, such that no student applied for
both some program and its dual. That is for all s ∈ S for all e ∈ Π e 6⊆ {x | 〈x, y〉 ∈ λ(s)}. We
will denote this property with λ∗.

Algorithm 4 College-oriented ranking with quotas transfer between pairs of programs

1: procedure Ranking(S, P, q, λ∗,Π)
2: Set all programs to Unfinalized
3: Set all students to Non-ranked
4: while there exists an Unfinalized program p do
5: for r ∈ {p, ∂p} do
6: With respect to q(r) take the most preferable students who:
7: 1) have r in their list and are non-ranked
8: 2) have r in their list and are ranked at less desirable program
9: Set all programs considered at point 2) to Unfinalized

10: Rank all taken students to r
11: if exactly one of p or ∂p still has free quotas then
12: Let r denotes that program and let k be the free quotas of r
13: With respect to k extend the search of candidates for ∂r as in the for loop.

14: for r ∈ {p, ∂p} do
15: With respect to trailing candidates extend the search for r as in the for loop.
16: Set r to Finalized

Why is this procedure correct?
The key observation is the same as in the algorithm without quotas transfer, namely once

someone is ranked at a particular program, from then on they can only move to programs they
prefer more than their current one. To see that note that the rankings of p and ∂p for all p
within the quotas are done before considering transferred quotas. Thus it cannot happen that
someone is ranked in p on a transferred quota and then ∂p takes the quota back as it was in the
applicant oriented algorithm. We again have that at some point all programs will be finalized.
Also none of p or ∂p can be set to unfinalized on line 9, because of the assumption that no
student applied both for p and ∂p. This guarantees that no relevant application can be ignored
during the ranking process.

Now if student s is not assigned correctly by first or second condition because of program
p, then they were not chosen properly when p was eventually finalized which is a contradiction.
Also this selection process guarantees that the third condition is satisfied which completes the
correctness.

What is the running time of this procedure?
As in the previous problem an efficient implementation includes presorting by highest result

all wishes in the corresponding programs. We again keep track of the index i of the last ranked
student in this sorted order and the quotas balance q. When we analyze a program p we search
for candidates after i and decrease q for every accepted candidate while q > 0. Then we do the
same for ∂p. If exactly one of p or ∂p has positive quotas balance (that means that the list of
candidates ended before the balance reached 0) we extend the search by transfering these quotas
to the balance of the other program. We further extend both searches for trailing candidates and

9

adjust i and q accordingly. So we consider every students’ wish no more than once. Whenever we
detect students that are advancing by point 2) we increase the quotas balance of their previous
program, just as in the standard problem.

This guarantees O(Dλ∗ logDλ∗ + |P |) running time of the procedure.

The running time needed for finding a stable ranking is still O(Dλ logDλ). We can again
report the sorted rankings of all programs in O(Dλ+ |P |) and since this problem is more general
than the standard we again have that the upper bound O(Dλ logDλ) is tight. We can now state
the following theorem, which we just presented the proof of:

Theorem 2: Given an instance J = 〈S, P, q, λ,Π〉, there exists a stable ranking for J . Also
there exists an applicant-oriented algorithm to find such ranking and if no student applied for
some program and its dual there further exists a college-oriented algorithm to find such ranking.
Both algorithms can report the corresponding program rankings sorted by highest result for time
O(Dλ logDλ + |P |). In the general case there are no faster algorithms with the same properties.

3 Arbitrary quotas transfer

The previous section describes a relatively simple extension of the standard problem, where
pairs of programs can transfer quotas between each other. Unfortunately transfering quotas
between several programs is not so natural to define. Consider the following instance of the
standard problem:

S = {Anna,George,Michael, Stephanie}
P = {Psychology,Economics, Law}

q = {〈Psychology, 1〉 〈Economics, 1〉 〈Law, 1〉}
λ = {〈Anna, [(Psychology, 10)]〉, 〈George, [(Law, 10)]〉, 〈Michael, [(Psychology, 9)]〉,

〈Stephanie, [(Law, 9)]〉}

If we allow quotas transfer in directions Economics → Psychology and Economics → Law
we can obtain two different rankings:

F = {〈Anna, Psychology〉, 〈George, Law〉, 〈Michael, Psychology〉} and

G = {〈Anna, Psychology〉, 〈George, Law〉, 〈Stephanie, Law〉}

In F we transfered the Economics quota to Psychology while in G it was transfered to Law.
In this example there occurs a tie between two programs for a single quota. In order for a

ranking to be fair there must exist formal rules that define how will unused quotas be trans-
ferred in case of such ties. All candidates must be aware of these rules before the beginning of
the application process because this information can significantly affect their order of desired
programs.

We now introduce such rules. Suppose P = {p1, ..., p5} is a set of programs. Consider the
following directed graph:

10

p1

p2

p3

p4

p5

〈1, 1〉

〈3, 1〉

〈2, 2〉

〈1, 2〉 〈2, 1〉

〈1, 1〉

〈1, 2〉

Fig.1 Simple transfer graph

Every edge has two natural number characteristics. We will call the left component out-
priority and the right component in-priority. We also want every node to have consecutive,
starting from 1 out-priorities for out-coming edges and consecutive, starting from 1 in-priorities
for in-coming edges as shown in the figure. The are no other restrictions for this graph, except
that it must be irreflexive. There might be nodes with no edges or nodes that have edges with
only one type of direction (like p1 and p5).

The intuition behind this is the following: Suppose program p1 has an unused quota. Then
it is a priority for p1 to transfer this quota to p2, then to p4 and finally to p3, just as the
corresponding out-priorities. Suppose p5 needs a quota. Then it is a priority for p5 to take this
quota from p2 and only then from p4, just as the corresponding in-priorities.

3.1 Definition of the problem

Along with students S, programs P , quotas function q and wishes function λ, we have a
transfer table T ⊂ P × P and priority functions σout : T → N and σin : T → N, having the
following properties:

• If 〈pout, pin〉 ∈ T , then pout 6= pin

• If p ∈ P and |T p| = x, then {σout(e) | e ∈ T p} = {1, ..., x}

• If p ∈ P and |Tp| = y, then {σin(e) | e ∈ Tp} = {1, ..., y}

Here T p denotes {〈pout, pin〉 ∈ T | p = pout} and Tp denotes {〈pout, pin〉 ∈ T | p = pin}

With respect to the graph example, T is the set of edges and σout and σin are functions
defining the out-priorities and in-priorities correspondingly.

Definition 3: Given T , σout and σin for 〈p, r〉 ∈ T , we define the set of higher out-edges as
T p↑r = {e ∈ T p |σout(e) < σout(〈p, r〉)} and the set of higher in-edges as Tr↑p = {e ∈ Tr |σin(e) <
σin(〈p, r〉)}.

11

In the previously described problems the stable ranking was defined solely by the ranking
function F , mapping students to programs. In this problem, however, we will include an addi-
tional function τ : T → N, indicating the number of transferred quotas between applicable pairs
of programs. This will be relevant for the verification that the ranking is indeed fair.

Because of the newly introduced concept of out-priorities we also introduce a special charac-
teristics κ : T → N, defined as κ(〈p, r〉) = max{0, q(p) − |F−1(p)| −

∑
e∈T p↑r τ(e)}. Informally

this function indicates the maximal amount of quotas that program p can transfer to program r
with respect to τ and out-priorities.

We now describe the intuition and motivation for the stable ranking conditions in this ex-
tension of the problem.

• In the standard problem we have that if a student s is ranked in program p, then all
more desirable programs for s are full and their minimal result is higher than the result
of s. Since we now allow quotas transfers it is natural to extend this with the additional
condition that all such programs cannot find a quota for s, i.e they have collected all quotas
they could collect with respect to κ. The same holds if the student is not ranked at all.

• Trailing candidates are considered in analogous manner - someone can be ranked as trailing
only if the corresponding program has already collected all quotas it could collect.

• Of course a program can transfer a quota only if this quota is not needed for its own ranking
and also if a program collected a quota, then its own quotas are already full.

• The last extension is regarding the concept of in-priorities namely if program p transferred
quotas to program r, then r collected the maximal possible amount of quotas from all
programs with in-priority higher than p.

With this intuition in mind the formal definition goes as follows:

Definition 4: Given an instance K = 〈S, P, q, λ, T, σout, σin〉, a partial function F : S → P
and a function τ : T → N, we define κ : T → N as κ(〈p, r〉) = max{0, q(p) − |F−1(p)| −∑

e∈T p↑r τ(e)}. We say that the ordered pair 〈F, τ〉 is a stable ranking for K if it satisfies the
following conditions:

1. If F (s) = p, then p exists in the list of s and for all programs r with lower index in that
list: |F−1(r)| ≥ q(r) +

∑
e∈Tr κ(e) and the result of s for r is less than min(r)

2. If F (s) is undefined, then for all programs p in the list of s: |F−1(p)| ≥ q(p) +
∑

e∈Tp κ(e)

and the result of s for p is less than min(p)

3. If |F−1(p)| > q(p) +
∑

e∈Tp τ(e), then min(p) = the q(p) +
∑

e∈Tp τ(e)-th greatest result

for p among F−1(p) and for all e ∈ Tp: τ(e) = κ(e)

4. If
∑

e∈T p τ(e) = x > 0, then |F−1(p)| ≤ q(p)− x

5. If
∑

e∈Tp τ(e) = x > 0, then |F−1(p)| ≥ q(p) + x

6. If τ(〈p, r〉) > 0, then for all 〈u, r〉 ∈ Tr↑p: κ(〈u, r〉) = τ(〈u, r〉)

Here F−1(p) is the set of all students s, such that F (s) = p and min(p) is the minimal result
for p among F−1(p) or ∞ in case this set is empty.

12

Problem 3: Given an instance K = 〈S, P, q, λ, T, σout, σin〉, does there exist a stable ranking
for K?

We now consider an example instance of this problem.
Suppose L = 〈S, P, q, λ, T, σout, σin〉, where:

S = {Tim, Jane, John, Peter,Anna, Stefan,Klaudia}
P = {A,B,C}

q = {〈A, 3〉, 〈B, 1〉, 〈C, 1〉}
λ = {〈Tim, [(C, 7), (B, 10)]〉, 〈Jane, [(B, 8)]〉, 〈John, [(A, 10)]〉, 〈Peter, [(C, 9)]〉,

〈Anna, [(C, 9)]〉, 〈Stefan, [(C, 9)]〉, 〈Klaudia, [(C, 8)]〉}
T, σout, σin =

A B

C

〈1, 1〉

〈2, 1〉

〈2, 1〉

〈1, 2〉

The following lists with results and graph with number of transfered quotas is a description
of a stable ranking for L:

A = [John-10], B = [Tim-10, Jane-8], C = [Anna-9, Stefan-9, P eter-9]
τ =

A B

C

1

1

0

0

Anna, Stefan and Peter are ranked as trailing, because of condition 3.
Klaudia is not ranked, because their result is not sufficient for C. Also κ(A,C) = τ(A,C) = 1

and κ(B,C) = τ(B,C) = 0 , so the second stable ranking condition is indeed valid for them.
If they, however, had an additional wish for program B, they would have been ranked there,
because it is a priority for A to transfer a quota to B. Note that this would not have changed
the ranking of C.

Tim is not ranked on his top desired program, because of condition 1.

13

3.2 Algorithm constructing applicant-oriented ranking

We now introduce an algorithm that constructs applicant-oriented ranking by the above rules.
We can summarize it as follows: we try to assign each student s with respect to their desired
programs. Let p be the first not analyzed yet. Now:

• If there are quotas, not used by p we rank s in p and check if we have to take back a quota
and how this affects the ranking of the corresponding program.

• If p is already full, we try to find a quota with respect to in-and-out priorities and check if
this affects the rankings of other programs.

• If p cannot find a quota, we try to assign s by result and check what happens with trailing
candidates.

• If the result of s is not sufficient, then it will further be not sufficient so p declines s.

Algorithm 5 Applicant-oriented ranking with arbitrary quotas transfer

1: procedure Ranking(S, P, q, λ, T, σout, σin)
2: Set all students to Unfinalized and Non-ranked
3: Let c(p) denote the number of students ranked in program p or |F−1(p)|
4: Let tout(p) denote the number of quotas transferred by program p or

∑
e∈T p τ(e)

5: Let tin(p) denote the number of quotas received by program p or
∑

e∈Tp τ(e)

6: Let µ(p) denotes the minimal result of a student ranked in program p
7: while there exists an Unfinalized student s do
8: Let p be the first program in the list of s that still has not declined s
9: if p is undefined then

10: Set s to Finalized
11: continue
12: if c(p) < q(p) then . there are still unused quotas
13: Rank s to p
14: if c(p) + tout(p) > q(p) then . we must take a quota back
15: Let r be the last program by out-priority for which p transferred a quota
16: Now p takes back a quota from r and declines r
17: if all programs that r can take a quota from declined r then
18: Rebalance(r)
19: else
20: Set one student in r sharing µ(r) to Unfinalized and Non-ranked

21: Set s to Finalized
22: continue
23: Let r be the first program by in-priority that still has not declined p

14

24: while r is defined do
25: Let foundQuota be false
26: if c(r) + tout(r) < q(r) then . r has a free quota
27: Set foundQuota to true
28: else if tout(r) > 0 then
29: Let u be the last program by out-priority for which r transferred a quota
30: if σout(〈r, p〉) < σout(〈r, u〉) then
31: Now r takes back a quota from u and declines u
32: if all programs that u can take a quota from declined u then
33: Rebalance(u)
34: else
35: Set one student in u sharing µ(u) to Unfinalized and Non-ranked

36: Set foundQuota to true

37: if foundQuota = true then
38: Now r transfers a quota to p
39: Rank s to p
40: Set s to Finalized
41: break
42: else
43: Now r declines p
44: Set r to be the next program by in-priority for p after r

45: if r is undefined then . we couldn’t find a quota
46: if the result of s for p is ≥ µ(p) then
47: Rank s to p
48: Rebalance(p)
49: else
50: Now p declines s

51: procedure Rebalance(p)
52: Let x = q(p) + tin(p)
53: if c(p) > x and µ(p) < the x-th greatest result in p then
54: Now p declines all students in p sharing µ(p)
55: Set all students in p sharing µ(p) to Unfinalized and Non-ranked

Again in terms of F ”Rank s to p” means set F to be F \{〈x, y〉 ∈ F |x = s}∪{〈s, p〉}, while
”Set s to Non-ranked” means set F to be F \ {〈x, y〉 ∈ F |x = s}. Also ”p transfers a quota to
r” means increase τ(〈p, r〉) and ”p takes back a quota from r” means decrease τ(〈p, r〉).

If we start with F = ∅, τ = T × {0} and consider the above remarks at the end of the
while-loop 〈F, τ〉 will be the desired stable ranking.

Why is this procedure correct?
Lemma 1: The above procedure terminates.
Whenever a student s is set to unfinalized in the while-loop, this is done either after they are

declined by some program, because of rebalancing or after their previous program was declined
by another program (lines 20 and 35). Both situations can occur only finitely many times after
which s will be set to finalized by line 10 and will remain finalized. Since this holds for arbitrary
s, we have that at some point all students will be finalized and the while-loop will end.

15

Lemma 2: When the above procedure reaches line 22 and c(p) = q(p) for currently considered
program p, tout(p) = 0 and from now on this value will not change.

(1) We increase tout(p) only if the contidion on line 26 is fullfilled, namely c(p)+tout(p) < q(p).
Whenever we rank a student by line 12, we increase c(p) and then evenutally decrease tout(p)

on line 16. By this and (1) it follows that whenever the procedure reaches line 22, c(p)+tout(p) ≤
q(p) for currently considered program p. Thus if c(p) = q(p) on that line, we have that tout(p) = 0
and this value will not change anymore again because of (1).

Corollary of Lemma 2: During the run of the above procedure, if program p is declined or
recieves a quota from program r, then tout(p) = 0 and from now on this value will not change.

Consider the first time program p is trying to find a quota for student s. It follows that
currently c(p) = q(p), so for the last student ranked within the quotas we have that the procedure
reached line 22, which implies that tout(p) = 0 and this value will not change.

Theorem 3 (invariant of the main while-loop): Whenever the procedure reaches line
7, the currently constructed functions F and τ satisfy the stable ranking conditions restricted to
currently finalized candidates, everyone who is unfinalized has no chance of assignation to any
program that declined them and every program has no chance of receiving a quota from a program
that declined it.

Proof. We prove the invariant by considering different cases as described in the beginning of this
sub-chapter.

Before the beginning of the while-loop there are no finalized students, so F being ∅ and τ
being T × {0} vacuously satisfy all stable ranking conditions restricted to finalized candidates.
The other two invariant conditions are also satisfied because no program declined any student
or other program.

Suppose the invariant conditions are satisfied for currently constructed F and τ and we are
analyzing student s.
• If all the desired programs have already declined s, then they are set to finalized. This does

not change the definitions of F and τ and we already have that s has no chance of assignation
by the invariant, so F and τ now satisfy the second stable ranking condition also for s.
• If the currently considered program p has quotas, not used by it (line 12), we just rank s

here. However this might cause the fourth stable ranking condition to be no longer satisfied. If
so, we take back a quota from the last program by out-priority r that p transferred to, noting
that taking back the quota from other program might cause the failure of condition six or further
failure of conditions one or two. By the very same reason we see that p can not give any more
quotas to r and thus p declines r, keeping the third invariant condition. This quota may cause
a student (or students) to drop from the ranking of r. We now have two cases:

1) all programs that r can receive a quota from already declined it and so we need to check
only if the third stable ranking condition is still satisfied. If it’s not, we know that r cannot
receive any more quotas and students who are trailing now have a lower result than the last
within the taken quotas. By Corollary of Lemma 2, we have that tout(r) = 0 and this value will
not change. It follows that the minimal result can now alter only if someone with higher result
is ranked or r gives a quota back, which causes it to either increase or stay the same. In both
cases this minimum cannot decrease and thus the dropped candidates do not have any chance
of further assignation, so r declines them, keeping the second invariant condition;

2) we might find a quota for r. In this case we just drop one student sharing the minimal
result and will reconsider their application later.

16

• We now consider the case when we have to search for a quota. By the invariant we know
that all the programs that declined p already transferred to p the maximal possible number of
quotas. Thus we start the search from the first program by in-priority that still has not declined
p. This program r can give quotas to p only if it has unused quotas or has already given a quota
to a program with lower out-priority than p. If so, we proceed with that program exactly as in
the previous case. Note that this whole step is performed after we are sure that there are no free
quotas in p and so this student is indeed ranked on a taken quota, causing the fifth stable ranking
condition to be satisfied. Note also that it does not matter what the result of this student is.
We may just consider that always the candidates with worst results are taking the transferred
quotas.
• If we cannot find a quota for s we try to rank them by result and in case there are

dropping candidates we proceed in a way similar to the second case, so the invariant conditions
are satisfied by the same reasons. If now s cannot be ranked by result, they have no further
chance of assignation and so they are declined, again keeping the invariant conditions.

From Lemma 1 we have that at some point all students will be finalized and the while-loop
will end. From the invariant conditions we now have that F and τ satisfy the stable ranking
conditions over all candidates, which completes the correctness of the procedure.

What is the running time of this procedure?
Let ρ denotes the total number of programs or |P |.
Suppose e = 〈p, r〉 ∈ T . For each such r we set p at the σin(e)− 1-st position in an array for

r. We start searching for quotas from the beginning of this array and continue from the next
element whenever r is denied. Also for each such p we put the pairs (r, σout(e)) in a map data
structure for p and r on the σout(e) − 1-st position in an array for p. For each p we need one
more initially empty structure mapping out-priorities with number of transferred quotas. In this
structure we keep track of the highest key.

Preparing the above mentioned structures costs O(ρ2 log ρ).
We can now answer in time O(log ρ) for the question on line 30, since σout(〈r, u〉) is just the

highest key in the structure maintaining the number of transferred quotas. It also takes O(log ρ)
to update this structure.

Of course we keep track of c(p), tout(p) and tin(p) for all p. We initialize them with 0.
As in the previous problems we store the ranking for program p in multi-map data structure

and keep track of the lowest key and the corresponding number of elements. This again guaran-
tees O(1) time needed for making a decision whether someone should be ranked or removed and
O(logDλ) for actual ranking or removing.

We now observe that every candidate can be ranked and removed no more than O(ρ) times
to each of their desired programs. They can be ranked once in the main ranking of program p,
once for all programs that p can receive a quota from and once as a trailing candidate, while p
has been declined by all relevant programs. One such step costs O(logDλ) to update the ranking
and O(log ρ) to update the transfers.

This guarantees O(ρDλ(log ρ+ logDλ) + ρ2 log ρ) running time for the whole procedure.
Reporting the actual program rankings and transferred quotas is now just iterating over all

elements in the corresponding multi-maps and maps. The time complexity of this is O(Dλ + ρ2)
which does not increase the overall running time of the procedure.

We can now summarize the results of this subchapter with the following theorem:

17

Theorem 4: Given an instance K = 〈S, P, q, λ, T, σout, σin〉, there exists a stable ranking for
K. Also there exists an applicant-oriented algorithm to find such ranking and report the corre-
sponding program rankings and number of transferred quotas in time O(ρDλ(log ρ + logDλ) +
ρ2 log ρ), where ρ is the number of programs.

3.3 On constructing college-oriented ranking

Consider the instance K = 〈S, P, q, λ, T, σout, σin〉, where:

S = {John,Alexandra}
P = {Chemistry, Pharmacy,Ecology}

q = {〈Chemistry, 1〉, 〈Pharmacy, 1〉, 〈Ecology, 0〉}
λ = {〈John, [(Ecology, 8), (Pharmacy, 10)]〉, 〈Alexandra, [(Pharmacy, 10)]〉}
T, σout, σin = {(Chemistry, Pharmacy, 1, 1), (Chemistry, Ecology, 2, 1)}

It cannot be determined which of the following stable rankings is more acceptable for the
university:

F1 = {〈Alexandra, Pharmacy〉, 〈John,Ecology〉},

τ1 = {Chemistry 0−→ Pharmacy, Chemistry
1−→ Ecology}

and

F2 = {〈Alexandra, Pharmacy〉, 〈John, Pharmacy〉},

τ2 = {Chemistry 1−→ Pharmacy, Chemistry
0−→ Ecology}

This undeterminacy is again caused by a student applying for two programs that can col-
lect common quotas. In the previous section we solved this by adding the restriction that no
student can apply for both a program and its dual. As mentioned this assumption arises from
purely practical cases in which the dual programs have some conceptual separation that prevents
students from applying for both (for instance male-female candidates, different education form
or something else). This assumption however is not applicable here, since we expect that the
transfer table is based on similarities between programs and consecutively it is expected for a
candidate to apply for several similar programs.

We can conclude that the above described conditions for a stable ranking are not sufficient
to decide what is a purely college-oriented ranking.

18

4 Further observations and conclusions

An important observation is that a candidate can be ranked on a less desirable program in
their list, because of a non-ranked candidate. Thus it is reasonable to consider reporting also
the non-ranked candidates.

We again consider the example K = 〈S, P, q, λ, T, σout, σin〉, where:

S = {John,Alexandra}
P = {Chemistry, Pharmacy,Ecology}

q = {〈Chemistry, 1〉, 〈Pharmacy, 1〉, 〈Ecology, 0〉}
λ = {〈John, [(Ecology, 8), (Pharmacy, 10)]〉, 〈Alexandra, [(Pharmacy, 10)]〉}
T, σout, σin = {(Chemistry, Pharmacy, 1, 1), (Chemistry, Ecology, 2, 1)}

The algorithm will construct the following stable ranking:

F1 = {〈Alexandra, Pharmacy〉, 〈John,Ecology〉},

τ1 = {Chemistry 0−→ Pharmacy, Chemistry
1−→ Ecology}

Suppose there is another candidate Bertha with list [(Pharmacy, 9)]. In this case the only
stable ranking is:

F2 = {〈Alexandra, Pharmacy〉, 〈John, Pharmacy〉},

τ2 = {Chemistry 1−→ Pharmacy, Chemistry
0−→ Ecology}

Although Bertha is not ranked, this candidate is forcing John to drop to a less desirable
program in their list. Note also that the pair 〈F1, τ1〉 is no longer stable, since it contradicts the
second stable ranking condition for Bertha.

This new ranking opens another question regarding fairness: Why should John receive a
quota for Pharmacy - can this candidate be ranked there as trailing?

For that we first need to drop the second part of the third stable ranking condition and
formulate it just as: If |F−1(p)| > q(p) +

∑
e∈Tp τ(e), then min(p) = the q(p) +

∑
e∈Tp τ(e)-th

greatest result for p among F−1(p). If we now introduce the restriction that trailing candidates
take only one quota, then a stable ranking might not exist.

Consider:

F3 = {〈Alexandra, Pharmacy〉, 〈John, Pharmacy〉, 〈Bertha, Pharmacy〉},

τ3 = {Chemistry 1−→ Pharmacy, Chemistry
0−→ Ecology}

This ranking is not stable, because it contradicts the reformulated third condition for Pharmacy.
The pair 〈F2, τ2〉 is not stable too, because it contradicts the newly introduced rule. It is easy
to check that all other possible rankings for this instance are also not stable.

We currently don’t know if the existance of a stable ranking for the problem with the above
mentioned restrictions is in the NP class.

Another interesting question would be to find a stable ranking for the problem with re-
formulated third condition, such that the trailing candidates indeed take the minimum num-
ber of transferred quotas. That is to find a stable ranking 〈F, τ〉 for arbitrary instance K =
〈S, P, q, λ, T, σout, σin〉, such that

∑
e∈T τ(e) is minimal.

19

Is it possible to define the stable ranking conditions in such way, so that there exists a college-
oriented ranking?

As shown in the previous section, our definition of the problem appears to be not sufficient
to decide what is a purely college-oriented ranking. There however might exist other extensions,
for which a college-oriented ranking is defined. Along with the tansfer graph we can introduce
a linearly ordered importance property for the programs. Our extension is still more general,
since we can easily introduce in-and-out priorities, based on this ordering (we take quotas from
less important programs and give to more important). What can now be considered a college-
oriented tendency is transferring quotas to programs with higher importance, but for now we
leave this is as an open problem.

What would happen if we ignore the concept of in-priorites and define stable ranking without
the sixth condition?

Consider the instance M = 〈S, P, q, λ, T, σout〉, where:

S = {Thomas,Kim, Joanna}
P = {A,B,C,D,E}

q = {〈A, 0〉, 〈B, 0〉, 〈C, 0〉, 〈D, 1〉, 〈E, 1〉}
λ = {〈Thomas, [(A, 8)]〉, 〈Kim, [(B, 7)]〉, 〈Joanna, [(C, 8)]〉}

T, σout = {(D,B, 1), (D,A, 2), (E,B, 1), (E,C, 2)}

It cannot be determined which of the following rankings is more fair for the candidates:

F4 = {〈Thomas,A〉, 〈Kim,B〉},

τ4 = {D 0−→ B,D
1−→ A,E

1−→ B,E
0−→ C}

and

F5 = {〈Kim,B〉, 〈Joanna,C〉},

τ5 = {D 1−→ B,D
0−→ A,E

0−→ B,E
1−→ C}

Is it possible to construct another (possibly faster) ranking method if we are allowed to break
some of the stable ranking conditions? For instance, if some students do not mind in which
desired program they are ranked.

Breaking any of the stable ranking conditions opens questions regarding fairness, especially
if there occurs a tie between candidates. We leave this also as an open problem.

20

References

[1] D. Gale, L.S. Shapley, College admissions and the stability of marriage, American Mathe-
matical Monthly 69 (1) (1962) 9-15.

[2] A.E. Roth, The evolution of the labor market for medical interns and residents: a case study
in game theory, Journal of Political Economy 6 (4) (1984) 991-1016.

[3] D. Gusfield, R.W. Irving, The Stable Marriage Problem: Structure and Algorithms, MIT
Press, 1989.

[4] A.E. Roth, M.A.O. Sotomayor, Two-sided matching: a study in game-theoretic modeling and
analysis, Econometric Society Monographs, vol. 18, Cambridge University Press, 1990.

[5] M. Bäıoua, M. Balinski Two-sided matching: a study in game-theoretic modeling and anal-
ysis, Theoretical Computer Science 322 (2004) 245 – 265

[6] P. Biró, T. Fleiner, R.W. Irving, D.F. Manlove, The College Admissions problem with lower
and common quotas, Theoretical Computer Science 411 (2010) 3136-3153

21

