Edition 4.1

The GNU C Programming Tutorial

Mark Burgess
Faculty of Engineering, Oslo College

Ron Hale-Evans

Copyright (©) 2002 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; there being no Invariant
Section, with the Front-Cover Texts being “A GNU Manual”, and with the
Back-Cover Texts as in (a) below. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

Preface xi

Preface

This book is a tutorial for the computer programming language C. Unlike BASIC or
Pascal, C was not written as a teaching aid, but as a professional tool. Programmers love
C! Moreover, C is a standard, widely-used language, and a single C program can often be
made to run on many different kinds of computer. As Richard M. Stallman remarks in
GNU Coding Standards, “Using another language is like using a non-standard feature: it
will cause trouble for users.” (See http://www.gnu.org/prep/standards_toc.html.)

Skeptics have said that everything that can go wrong in C, does. True, it can be unfor-
giving, and holds some difficulties that are not obvious at first, but that is because it does
not withhold its powerful capabilities from the beginner. If you have come to C seeking a
powerful language for writing everyday computer programs, you will not be disappointed.

To get the most from this book, you should have some basic computer literacy — you
should be able to run a program, edit a text file, and so on. You should also have access to
a computer running a GNU system such as GNU /Linux. (For more information on GNU
and the philosophy of free software, see http://www.gnu.org/philosophy/.)

The tutorial introduces basic ideas in a logical order and progresses steadily. You do
not need to follow the order of the chapters rigorously, but if you are a beginner to C, it is
recommended that you do. Later, you can return to this book and copy C code from it; the
many examples range from tiny programs that illustrate the use of one simple feature, to
complete applications that fill several pages. Along the way, there are also brief discussions

of the philosophy behind C.

Computer languages have been around so long that some jargon has developed. You
should not ignore this jargon entirely, because it is the language that programmers speak.
Jargon is explained wherever necessary, but kept to a minimum. There is also a glossary at
the back of the book.

The authors of this book hope you will learn everything you need to write simple C
programs from this book. Further, it is released under the GNU Free Documentation
License, so as the computers and robots in the fantasies of Douglas Adams say, “Share and
Enjoy!”

The first edition of this book was written in 1987, then updated and rewritten in 1999. It
was originally published by Dabs Press. After it went out of print, David Atherton of Dabs
and the original author, Mark Burgess, agreed to release the manuscript. At the request of
the Free Software Foundation, the book was further revised by Ron Hale-Evans in 2001 and
2002.

The current edition is written in Texinfo, which is a documentation system using a single
source file to produce both online information and printed output. You can read this tutorial
online with either the Emacs Info reader, the stand-alone Info reader, or a World Wide
Web browser, or you can read it as a printed book.

The advantages of C 1

1 Introduction

What is a high-level language? Why is C unusual?

Any sufficiently complex object has levels of detail; the amount of detail we see depends
on how closely we scrutinize the object. A computer has many levels of detail.

The terms low level and high level are often used to describe these layers of complexity
in computers. The low level is buried in the computer’s microchips and microcircuits. The
low level is the level at which the computer seems most primitive and mechanical, whereas
the high level describes the computer in less detail, and makes it easier to use.

You can see high levels and low levels in the workings of a car. In a car, the nuts, bolts,
and pistons of the low level can be grouped together conceptually to form the higher-level
engine. Without knowing anything about the nuts and bolts, you can treat the engine as a
black box: a simple unit that behaves in predictable ways. At an even higher level (the one
most people use when driving), you can see a car as a group of these black boxes, including
the engine, the steering, the brakes, and so on. At a high level, a computer also becomes a
group of black boxes.

C is a high-level language. The aim of any high-level computer language is to provide
an easy, natural way to give a list of instructions (a computer program) to a computer.
The native language of the computer is a stream of numbers called machine language. As
you might expect, the action resulting from a single machine language instruction is very
primitive, and many thousands of them can be required to do something substantial. A
high-level language provides a set of instructions you can recombine creatively and give
to the imaginary black boxes of the computer. The high-level language software will then
translate these high-level instructions into low-level machine language instructions.

1.1 The advantages of C

C is one of a large number of high-level languages designed for general-purpose program-
ming, in other words, for writing anything from small programs for personal amusement to
complex industrial applications.

C has many advantages:

e Before C, machine-language programmers criticized high-level languages because, with
their black box approach, they shielded the user from the working details of the com-
puter and all its facilities. C, however, was designed to give access to any level of the
computer down to raw machine language, and because of this, it is perhaps the most
flexible high-level language.

e C has features that allow the programmer to organize programs in a clear, easy, logical
way. For example, C allows meaningful names for variables without any loss of effi-
ciency, yet it gives a complete freedom of programming style, including flexible ways
of making decisions, and a set of flexible commands for performing tasks repetitively
(for, while, do).

2 Chapter 1: Introduction

e C is succinct. It permits the creation of tidy, compact programs. This feature can
be a mixed blessing, however, and the C programmer must balance simplicity and
readability.

e C allows commands that are invalid in other languages. This is no defect, but a powerful
freedom which, when used with caution, makes many things possible. It does mean
that there are concealed difficulties in C, but if you write carefully and thoughtfully,
you can create fast, efficient programs.

e With C, you can use every resource your computer offers. C tries to link closely with
the local environment, providing facilities for gaining access to common peripherals
like disk drives and printers. When new peripherals are invented, the GNU community
quickly provides the ability to program them in C as well. In fact, most of the GNU
project is written in C (as are many other operating systems).

For the reasons outlined above, C is the preeminent high-level language. Clearly, no
language can guarantee good programs, but C can provide a framework in which it is easy
to program well.

1.2 Questions for Chapter 1

1. Explain the distinction between high levels and low levels.
2. What is a “black box”?

3. Name a few advantages to programming in the C language.

The compiler 3

2 Using a compiler

How to use a compiler. What can go wrong.

The operating system is the layer of software that drives the hardware of a computer and
provides the user with a comfortable work environment. Operating systems vary, but most
have a shell, or text interface. You use the GNU shell every time you type in a command
that launches an email program or text editor under GNU.

In the following sections of this chapter, we will explore how to create a C program from
the GNU shell, and what might go wrong when you do.

2.1 Basic ideas about C

First a note about a programming language that is different from the C programming
language, the GNU shell. When you enter commands in the GNU shell, they are executed
immediately. Moreover, the shell is a programming language, in that the commands you
type are a program, because you can also create a text file containing many shell commands.
When you run this file, the commands will be executed in sequence.

On the other hand, consider C. While a shell command file can be executed directly, a
C program must be created in two stages:

1. First, the program is written in the form of text files with a text editor such as GNU
Emacs. This form of the program is called the source code. A computer cannot execute
source code directly.

2. Second, the completed source code is processed with a compiler — a program that
generates a new file containing a machine-language translation of the source code.
This file is called an executable file, or executable. The executable file is said to have
been compiled from the source code.

To run the compiled program, you must usually type the name of the executable file
preceded by a period and a slash, as in this example:

./myprogram

The “dot-slash” prefix tells the GNU shell to look in the current directory for the executable.
You usually do not need to type ‘./’ in front of commands for programs that came with
your GNU system, such as emacs, because the computer already knows where to look for
the executables of those programs, which were placed in special directories when your GNU
system was installed.

A C program is made up of, among other components, variables and functions. A variable
is a way to hold some data which may vary, hence the name. For example, a variable might
hold the number 17, and later the number 41. Another variable might hold the word “Sue”.

A function is a segment of text in the source code of a program that tells the computer
what to do. Programming consists, in large part, of writing functions.

4 Chapter 2: Using a compiler

2.2 The compiler

When you compile a program, the compiler usually operates in an orderly sequence of
phases called passes. The sequence happens approximately like this:

1. First, the compiler reads the source code, perhaps generating an intermediate code
(such as pseudo-code) that simplifies the source code for subsequent processing.

2. Next, the compiler converts the intermediate code (if there is any) or the original
source code into an object code file, which contains machine language but is not yet
executable. The compiler builds a separate object file for each source file. These are
only temporary and are deleted by the compiler after compilation.

3. Finally, the compiler runs a linker. The linker merges the newly-created object code
with some standard, built-in object code to produce an executable file that can stand
alone.

GNU environments use a simple command to invoke the C compiler: gcc, which stands for
“GNU Compiler Collection”. (It used to stand for “GNU C Compiler”, but now GCC can
compile many more languages than just C.) Thus, to compile a small program, you will
usually type something like the following command:

gec file_name

On GNU systems, this results in the creation of an executable program with the default
name ‘a.out’. To tell the compiler you would like the executable program to be called
something else, use the ‘-0’ option for setting the name of the object code:

gcc -o program_name file_name

For example, to create a program called ‘myprog’ from a file called ‘myprog.c’, write
gcc -0 myprog myprog.c

To launch the resulting program ‘myprog’ from the same directory, type
./myprog

2.3 File names

GCC uses the following file name conventions:

Source code file program_name . c

Object file program_name . o
Executable file program_name (no ending)
Header file name.h

Library file libname.a or libname.so

The file name endings, or file extensions, identify the contents of files to the compiler. For
example, the ‘. c’ suffix tells the compiler that the file contains C source code, and the other
letters indicate other kinds of files in a similar way.

Errors 5

2.4 Errors

Errors are mistakes that programmers make in their code. There are two main kinds of
€rTors.

e Compile-time errors are errors caught by the compiler. They can be syntax errors, such
as typing fro instead of for, or they can be errors caused by the incorrect construction
of your program. For example, you might tell the compiler that a certain variable is
an integer, then attempt to give it a non-integer value such as 5.23. (See Section 2.4.2
[Type errors|, page 6.)

The compiler lists all compile-time errors at once, with the line number at which each
error occurred in the source code, and a message that explains what went wrong.
For example, suppose that, in your file ‘eg.c’ you write

y = sin (x];
instead of

y = sin (x);
(By the way, this is an example of assignment. With the equals sign (‘=’), you are
assigning the variable y (causing the variable y to contain) the sine of the variable x.
This is somewhat different from the way equals signs work in mathematics. In math,
an equals sign indicates that the numbers and variables on either side of it are already
equal; in C, an equals sign makes things equal. Sometimes it is useful to think of the
equals sign as an abbreviation for the phrase “becomes the value of”.)

Ignore the syntactic details of the statements above for now, except to note that clos-
ing the (x) with a square bracket instead of a parenthesis is an error in C. Upon
compilation, you will see something like this error message:

eg.c: In function ‘main’:

eg.c:8: parse error before ‘]’
(If you compile the program within Emacs, you can jump directly to the error. We will
discuss this feature later. See Chapter 23 [Debugging|, page 231, for more information.)

A program with compile-time errors will cause the compiler to halt, and will not produce
an executable. However, the compiler will check the syntax up to the last line of your
source code before stopping, and it is common for a single real error, even something
as simple as a missing parenthesis, to result in a huge and confusing list of nonexistent
“errors” from the compiler. This can be shocking and disheartening to novices, but
you’ll get used to it with experience. (We will provide an example later in the book.
See Chapter 23 [Debugging], page 231.)

As a rule, the best way to approach this kind of problem is to look for the first error,
fix that, and then recompile. You will soon come to recognize when subsequent error
messages are due to independent problems and when they are due to a cascade.

e Run-time errors are errors that occur in a compiled and running program, sometimes
long after it has been compiled.

One kind of run-time error happens when you write a running program that does not
do what you intend. For example, you intend to send a letter to all drivers whose

6 Chapter 2: Using a compiler

licenses will expire in June, but instead, you send a letter to all drivers whose licenses
will ever expire.

Another kind of run-time error can cause your program to crash, or quit abruptly. For
example, you may tell the computer to examine a part of its memory that doesn’t exist,
or to divide some variable by zero. Fortunately, the GNU environment is extremely
stable, and very little will occur other than an error message in your terminal window
when you crash a program you are writing under GNU.

If the compilation of a program is successful, then a new executable file is created.

When a programmer wishes to make alterations and corrections to a C program, these
must be made in the source code, using a text editor; after making the changes, the pro-
grammer must recompile the program, or its salient parts.

2.4.1 Typographical errors

The compiler can sometimes fail for very simple reasons, such as typographical errors,
including the misuse of upper- and lower-case characters. The C language is case-sensitive.
Unlike languages such as Pascal and some versions of BASIC, C distinguishes between
upper- and lower-case letters, such as ‘A’ and ‘a’. If a letter is typed in the wrong case in a
critical place in the source code, compilation will fail. This is a potential source of errors
that are difficult to find.

2.4.2 Type errors

C supports a variety of variable types (different kinds of variables for different kinds of
data), such as integer for integer numbers, and float for numbers with fractional parts.
You can even define your own types, such as total for a sum, or surname for someone’s
last name. You can also convert a variable of one type into other types. (This is called type
coercion.) Consequently, the type of a variable is of great importance to the compiler.

C requires us to list the names and types of all variables that will be used in a program,
and provide information about where they are going to be used. This is called declaring
variables. If you fail to declare a variable, or use it as if it were a different type from the
type it is declared to be, for example, by assigning a non-integer value to an integer variable,
you will receive a compile-time error.

See Chapter 5 [Variables and declarations|, page 19, for more information on variable
declarations. See Chapter 3 [The form of a C program|, page 9, for some simple examples
of variable declarations.

2.5 Questions for Chapter 2

1. What is a compiler?

2. How does one run a C program?

Questions for Chapter 2 7

3. How does one usually compile a C program?

4. Are upper and lower case equivalent in C?

5. What the two main kinds of error that can occur in a program?

6. If you had some C source code that you wished to call “accounts”, under what name
would you save it?

7. What would be the name of the executable file for the program in the last question?

8. How would you run this program?

Chapter 2: Using a compiler

A word about style 9

3 The form of a C program

What goes into a C program? What does one look like?

The basic building block of a C program is the function. Every C program is a collection
of one or more functions. Functions are made of variable declarations and statements, or
complex commands, and are surrounded by curly brackets (‘{’ and ‘}’).

One and only one of the functions in a program must have the name main. This function
is always the starting point of a C program, so the simplest C program is a single function
definition:

main ()
{
}

The parentheses ‘() that follow the name of the function must be included. This is how C
distinguishes functions from ordinary variables.

The function main does not need to be at the top of a program, so a C program does not
necessarily start at line 1, but wherever the function called main is located. The function
main cannot be called, or started, by any other function in the program. Only the operating
system can call main; this is how a C program is started.

The next most simple C program is perhaps a program that starts, calls a function that
does nothing, and then ends.

/**/

/* */
/* Program : do nothing */
/* */
[KoK Kok ok ok Kok oK ok oK o oK ok o oK ok K ok oK ok oK oK ok ok ook ok Kok oK ok ok Kok oK ok ok ok ok ok
main () /* Main program */

{

do_nothing();
}

/**/

do_nothing() /* Function called */

{

3
(Any text sandwiched between ‘/*” and ‘*/” in C code is a comment for other humans to
read. See the section on comments below for more information.)

There are several things to notice about this program.

First, this program consists of two functions, one of which calls the other.

Second, the function do_nothing is called by simply typing the main part of its name
followed by ‘()’ parentheses and a semicolon.

Third, the semicolon is vital; every simple statement in C ends with one. This is a signal
to the compiler that the end of a statement has been reached and that anything that follows
is part of another statement. This signal helps the compiler diagnose errors.

10 Chapter 3: The form of a C program

Fourth, the curly bracket characters ‘{’ and ‘}’ outline a block of statements. When
this program meets the closing ‘} of the second function’s block, it transfers control back
to ‘main’, where it meets another ‘}’, and the program ends.

3.1 A word about style

The code examples above are simple, but they illustrate the control flow of a C program,
or the order in which its statements are executed. You should note that these programs are
written in “old-fashioned” C, as the language existed before ANSI Standard C — the version
in which most C programs are now written. The above programs are also missing several
key elements that most C programs have, such as header files and function prototypes.
Finally, they do not show good style; if you wish to submit programs you write to the Free
Software Foundation, you should consult its advice on how best to use the C language.

You may wonder why we chose old-style C for these first few examples, even though
people proverbially learn best what they learn first. We did so because pre-ANSI C is con-
siderably simpler than the present form, and also because as you develop as a C programmer,
you will probably run across some old C code that you will want to read.

You may also wonder why a savvy programmer would want to follow the ANSI Standard,
which was drafted by committee, or even the GNU guidelines. Isn’t programming free
software all about freedom? Yes, but following the ANSI Standard ensures that your code
can be easily compiled on many other computer platforms, and the GNU guidelines ensure
that your code can be read by other programmers. (We will introduce good C style in our
examples soon. Meanwhile, you can examine the GNU guidelines later in the book. See
Chapter 22 [Style|, page 227.)

3.2 Comments

Annotating programs.

Comments are a way of inserting remarks and reminders into code without affecting its
behavior. Since comments are only read by other humans, you can put anything you wish
to in a comment, but it is better to be informative than humorous.

The compiler ignores comments, treating them as though they were whitespace (blank
characters, such as spaces, tabs, or carriage returns), and they are consequently ignored.
During compilation, comments are simply stripped out of the code, so programs can contain
any number of comments without losing speed.

Because a comment is treated as whitespace, it can be placed anywhere whitespace is
valid, even in the middle of a statement. (Such a practice can make your code difficult to
read, however.)

Any text sandwiched between ‘/*’ and ‘*/’ in C code is a comment. Here is an example
of a C comment:

Questions for Chapter 3 11

V£ T, comment */

Comments do not necessarily terminate at the end of a line, only with the characters
‘x/°. If you forget to close a comment with the characters ‘*/’, the compiler will display an
‘unterminated comment’ error when you try to compile your code.

3.3 Example 1

#include <stdio.h> /* header file %/
main () /* Trivial program */
{

/* This little line has no effect */
/* This little line has none */
/* This little line went all the way down
to the next line,
And so on...
And so on...
And so on... */

do_little();

printf ("Function ’main’ completing.\n");

¥

[ok skok ok ok sk ok ok ok sk ko ok ok sk ok ok sk ok ok ok sk ok ok sk ok ok ok ok ok k ok sk ok kok ok ok ok /

/* A bar like the one above can be used to */
/* separate functions visibly in a program */

do_little ()
{

/* This function does little. */

printf ("Function ’do_little’ completing.\n");
}

Again, this example is old-fashioned C, and in mediocre style. To make it more compliant
with the ANSI Standard and GNU guidelines, we would declare the variable type each
function returns (int for main, which also requires an exit or return statement), and we
would create function prototypes at the beginning of the file. (See Chapter 4 [Functions],
page 13.)

3.4 Questions for Chapter 3

12

Chapter 3: The form of a C program

1. What is a block?
2. Does a C program start at the beginning? Where is the beginning?

3. What happens when a program comes to a ‘}’ character? What does this character

signify?

4. What vital piece of punctuation goes at the end of every simple C statement?

What happens if a comment is not ended? That is if the programmer types ‘/*’ .. to
start but forgets the ..**/’ to close?

Function examples 13

4 Functions

Solving problems and getting results.

A function is a section of program code that performs a particular task. Making functions
is a way of isolating one section of code from other independent sections. Functions allow a
programmer to separate code by its purpose, and make a section of code reusable — that
is, make it so the section can be called in many different contexts.

Functions should be written in the following form:
type function_name (type parameterl_name, type parameter2_name, ...)

{

variable declarations

statements

)

You may notice when reading the examples in this chapter that this format is somewhat
different from the one we have used so far. This format conforms to the ANSI Standard
and is better C. The other way is old-fashioned C, although GCC will still compile it.
Nevertheless, GCC is not guaranteed to do so in the future, and we will use ANSI Standard
C in this text from now on.

As shown above, a function can have a number of parameters, or pieces of information
from outside, and the function’s body consists of a number of declarations and statements,
enclosed by curly brackets: {...}".

4.1 Function names

Every function has a name by which it is known to the rest of the program. The name
of a function in C can be anything from a single letter to a long word. The ANSI Standard,
however, only guarantees that C will be able to distinguish the first 31 letters of identifiers, or
function and variable names. (Identifiers are therefore said to have 31 significant characters.)
In some cases, identifiers may have as few as six significant characters, to stay compatible
with older linkers, but this part of the ANSI Standard is becoming obsolete.

A function name must begin with an alphabetic letter or the underscore ‘_
but the other characters in the name can be chosen from the following groups:

9

character,
e Any lower-case letter from ‘a’ to ‘z’

e Any upper-case letter from ‘A’ to ‘Z’

Any digit from ‘0’ to ‘9’
The underscore character ‘_

?

Note that with GCC, you can also use dollar signs (‘$’) in identifiers. This is one of
GCC’s extensions to the C language, and is not part of the ANSI standard. It also may not
be supported under GCC on certain hardware platforms.

14 Chapter 4: Functions

4.2 Function examples

Here is an example of a function that adds two integers and prints the sum with C’s “print
formatted” function named printf, using the characters ‘%d’ to specify integer output.

void add_two_numbers (int a, int b) /* Add a and b */
{

int c;

c =a + b;

printf ("%d\n", c);
}
The variables a and b are parameters passed in from outside the function. The code defines
a, b, and ¢ to be of type int, or integer.
The function above is not much use standing alone. Here is a main function that calls
the add_two_numbers function:

int main()
{

int varl, var2;

varl = 1;
var2 53;

add_two_numbers (varl, var2);
add_two_numbers (1, 2);

exit (0);
}
When these functions are incorporated into a C program, together they print the number
54, then they print the number 3, and then they stop.

4.3 Functions with values

In mathematics, a function takes one or more values and calculates, or returns, another
value. In C, some functions return values and others do not; whether a function you write
does or does not will depend on what you want the function to do. For example, a function
that calculates a value should probably return that value, while a function that merely
prints something out may not need to.

The add_two_numbers function above did not return a value. We will now examine a
function that does.
Here is an example of calling a function that returns a value:
bill = calculate_bill (datal, data2, data3);
When this statement is executed, control is passed to the function calculate_bill, that

function executes, and then it returns control and some value to the original statement.
The value returned is assigned to bill, and the program continues.

Function prototyping 15

In C, returning a value from a function is a simple matter. Consider the function
calculate_bill as it might be written in a program that contains the statement above:

int calculate_bill (int a, int b, int c¢)

{
int total;

total = a + b + c;
return total;

}

As soon as the return statement is met, calculate_bill stops executing and returns the
value total.

A function that returns a value must have a return statement. Forgetting it can ruin a
program. For instance if calculate_bill had read as follows, then the variable bill would
have had no meaningful value assigned to it, and you might have received a warning from
the compiler as well. (The word void below indicates that the function does not return a
value. In ANSI C, you must place it before the name of any such function.)

void calculate_bill (int a, int b, int c)

{
int total;

total = a + b + c;

}

On the other hand, you do not need to actually use a value when a function returns
one. For example, the C input/output functions printf and scanf return values, but the
values are rarely used. See (undefined) [files|, page (undefined), for more information on
these functions.

If we use the first version of the calculate_bill function (the one that contains the
line return total;), the value of the function can simply be discarded. (Of course, the
resulting program is not very useful, since it never displays a value to the user!)

int main()

{
calculate_bill (1, 2, 3);
exit (0);

}

4.4 Function prototyping

Functions do not have to return integer values, as in the above examples, but can return
almost any type of value, including floating point and character values. (See Chapter 5
[Variables and declarations|, page 19, for more information on variable types.)

A function must be declared to return a certain variable type (such as an integer),
just as variables must be. (See Chapter 5 [Variables and declarations|, page 19, for more
information about variable types.) To write code in good C style, you should declare what
type of value a function returns (and what type of parameters it accepts) in two places:

16 Chapter 4: Functions

1. At the beginning of the program, in global scope. (See Chapter 6 [Scope|, page 27.)
2. In the definition of the function itself.

Function declarations at the beginning of a program are called prototypes. Here is an
example of a program in which prototypes are used:

#include <stdio.h>

void print_stuff (int foo, int bar);
int calc_value (int bas, int quux);

void print_stuff (int foo, int bar)

{

int var_to_print;

var_to_print = calc_value (foo, bar);

printf ("var_to_print = %d\n", var_to_print);
}

int calc_value (int bas, int quux)
{

return bas * quux;

}

int main()

{
print_stuff (23, 5);
exit (0);

}

The above program will print the text ‘var_to_print = 115’ and then quit.

Prototypes may seem to be a nuisance, but they overcome a problem intrinsic to com-
pilers, which is that they compile functions as they come upon them. Without function
prototypes, you usually cannot write code that calls a function before the function itself is
defined in the program. If you place prototypes for your functions in a header file, however,
you can call the functions from any source code file that includes the header. This is one
reason C is considered to be such a flexible programming language.

Some compilers avoid the use of prototypes by making a first pass just to see what
functions are there, and a second pass to do the work, but this takes about twice as long.
Programmers already hate the time compilers take, and do not want to use compilers
that make unnecessary passes on their source code, making prototypes a necessity. Also,
prototypes enable the C compiler to do more rigorous error checking, and that saves an
enormous amount of time and grief.

4.5 The exit function

Questions for Chapter 4 17

GNU coding standards specify that you should always use exit (or return) within your
main function. (See Chapter 22 [Style|, page 227.)

You can use the exit function to terminate a program at any point, no matter how
many function calls have been made. Before it terminates the program, it calls a number
of other functions that perform tidy-up duties such as closing open files.

exit is called with a return code, like this:
exit (0);
In the example above, the return code is 0. Any program that calls your program can read
the return code from your program. The return code is like a return value from another

function that is not main; in fact, most of the time you can use the return command within
your main, instead of exit.

Conventionally, a return code of 0 specifies that your program has ended normally and
all is well. (You can remember this as “zero errors”, although for technical reasons, you
cannot use the number of errors your program found as the return code. See Chapter 22
Style], page 227.) A return code other than 0 indicates that some sort of error has occurred.
If your code terminates when it encounters an error, use exit, and specify a non-zero return
code.

4.6 Questions for Chapter 4

1. Write a function that takes two values a and b, then returns the value of a * b (that
is, a times b.)

2. Is there anything wrong with a function that returns no value?
3. What happens if a function returns a value but you do not assign that value to anything?

4. What happens if a variable is assigned the result of a function, but the function does
not return a value?

5. How can you make a program terminate, anywhere in the program?

18

Chapter 4: Functions

Integer variables 19

5 Variables and declarations

Storing data. Discriminating types. Declaring data.

Variable names in C follow the same rules as function names, as far as what characters
they can contain. (See Section 4.1 [Function names|, page 13.) Variables work differently
from functions, however. Every variable in C has a data type, or type, that conveys to the
the compiler what sort of data will be stored in it. Functions in C are sometimes said to
have types, but a function’s type is actually the data type of the variable it returns.

In some older computer languages like BASIC, and even some newer ones like Perl, you
can tell what type a variable is because its name begins or ends with a special character.
For example, in many versions of BASIC, all integer variable names end with a percent sign
(‘%") — for example, ‘YEARY,”. No such convention exists in C. Instead, we declare variables,
or tell the compiler that they are of a certain type, before they are used. This feature of C
has the following advantages (among others):

e [t gives a compiler precise information about the amount of memory that will have to
be allotted to a variable when a program is run, and what sort of arithmetic will have
to be used with it (e.g. integer, floating point, or none at all).

e [t provides the compiler with a list of the variables so that it can catch errors in the
code, such as assigning a string to an integer variable.

There are a lot of variable types in C. In fact, you can define your own, but there are
some basic types ready for use. We will discuss them in the following sections.

5.1 Integer variables

C has five kinds of integer. An integer is a whole number (a number without a fractional
part). In C, there are a limited number of integers possible; how many depends on the type
of integer. In arithmetic, you can have as large a number as you like, but C integer types
always have a largest (and smallest) possible number.

e char: A single byte, usually one ASCII character. (See the section on the char type
below.)

e short: A short integer (16 bits long on most GNU systems). Also called short int.
Rarely used.

e int: A standard integer (32 bits long on most GNU systems).
e long: A long integer (32 bits long on most GNU systems, the same as int). Also called
long int.

e long long: A long long integer (64 bits long on most GNU systems). Also called long
long int.

64-bit operating systems are now appearing in which long integers are 64 bits long. With
GCC, long integers are normally 32 bits long and long long integers are 64 bits long, but
it varies with the computer hardware and implementation of GCC, so check your system’s
documentation.

20 Chapter 5: Variables and declarations

These integer types differ in the size of the integer they can hold and the amount of
storage required for them. The sizes of these variables depend on the hardware and operating
system of the computer. On a typical 32-bit GNU system, the sizes of the integer types are
as follows.

Type Bits Possible Values

char 8 -127 to 127

unsigned char 8 0 to 255

short 16 -32,767 to 32,767

unsigned short 16 0 to 65,535

int 32 -2,147,483,647 to 2,147,483,647
unsigned int 32 0 to 4,294,967,295

long 32 -2,147,483,647 to 2,147,483,647
unsigned long 32 0 to 4,294,967,295

long long 64 -9,223,372,036,854,775,807 to 9,223,372,036,854,775,807
unsigned long long 64 0 to 18,446,744,073,709,551,615

On some computers, the lowest possible value may be 1 less than shown here; for example,
the smallest possible short may be -32,768 rather than -32,767.

The word unsigned, when placed in front of integer types, means that only positive or
zero values can be used in that variable (i.e. it cannot have a minus sign). The advantage
is that larger numbers can then be stored in the same variable. The ANSI standard also
allows the word signed to be placed before an integer, to indicate the opposite of unsigned.

5.1.1 The char type

char is a special integer type designed for storing single characters. The integer value of
a char corresponds to an ASCII character. For example, a value of 65 corresponds to the
letter ‘A’, 66 corresponds to ‘B’, 67 to ‘C’, and so on.

As in the table above, unsigned char permits values from 0 to 255, and signed char
permits values from -127 (or -128) to 127. The char type is signed by default on some
computers, but unsigned on others. (See Appendix E [Character conversion table|, page 259.
See Appendix D [Special characters|, page 257.)

char is used only within arrays; variables meant to hold one character should be declared
int. (See Chapter 15 [Strings|, page 105, for more information on character arrays. See
Section 5.4.1 [Cast operator demol, page 23, for an example of how to use an integer variable
to hold a character value.)

5.1.2 Floating point variables

Declarations 21

Floating point numbers are numbers with a decimal point. There are different sizes
of floating point numbers in C. The float type can contain large floating point numbers
with a small degree of precision, but the double-precision double type can hold even larger
numbers with a higher degree of precision. (Precision is simply the number of decimal
places to which a number can be computed with accuracy. If a number can be computed
to five decimal places, it is said to have five significant digits.)

All floating point mathematical functions built into C require double or long float
arguments (long float variables are generally the same as double variables on GNU sys-
tems), so it is common to use float only for storage of small floating point numbers, and
to use double everywhere else.

Here are the floating point variable types available in C:
e float: A single-precision floating point number, with at least 6 significant decimal
digits.
e double: A double-precision floating point number. Usually the same as long float
on GNU systems. Has at least 10 significant decimal digits.
e long double: Usually the same as double on GNU systems, but may be a 128-bit
number in some cases.

On a typical 32-bit GNU system, the sizes of the different floating point types are as
follows.

Type Bits Possible values (approx.)
float 32 le-38 to 1e+38

double 64 2e-308 to 1e+308

long double 64 2e-308 to 1e+308

You may find the figures in the right-hand column confusing. They use a form of short-
hand for large numbers. For example, the number 5e2 means 5 % 10°2, or 500. 5e-2 means
5% 10" — 2 (5/100, or 1/20). You can see, therefore, that the float, double, and long
double types can contain some very large and very small numbers indeed. (When you work
with large and small numbers in C, you will use this notation in your code.)

5.2 Declarations

To declare a variable, write the type followed by a list of variables of that type:
type_name variable_name_1, ..., variable_.name_n;
For example:

int last_year, cur_year;
long double earth_mass, mars_mass, venus_mass;
unsigned int num_pets;

22 Chapter 5: Variables and declarations

long city_pop, state_pop;
state_pop = city_pop = 5000000;

short moon_landing = 1969;

float templ, temp2, temp3;

templ = 98.6;
temp2 = 98.7;
temp3 = 98.5;

double bignum, smallnum;
bignum = 2.36e208;
smallnum = 3.2e-300;
Always declare your variables. A compiler will catch a missing declaration every time and
terminate compilation, complaining bitterly. (You will often see a host of error messages,
one for each use of the undeclared variable. See Chapter 23 [Debugging|, page 231.)

5.3 Initialization

Assigning a variable its first value is called initializing the variable. When you declare a
variable in C, you can also initialize it at the same time. This is no more efficient in terms
of a running program than doing it in two stages, but sometimes creates tidier and more
compact code. Consider the following:

int initial_year;
float percent_complete;

initial_year = 1969;
percent_complete = 89.5;
The code above is equivalent to the code below, but the code below is more compact.

int initial_year = 1969;
float percent_complete = 89.5;

You can always write declarations and initializers this way, but you may not always want
to. (See Chapter 22 [Style], page 227.)

5.4 The cast operator

An operator is a symbol or string of C characters used as a function. One very valuable
operator in C is the cast operator, which converts one type into another. Its general form
is as follows:

(type) variable
For example, floating point and integer types can be interconverted:

float exact_length;
int rough_length;

Cast operator demo 23

exact_length = 3.37;
rough_length = (int) exact_length;

In the example above, the cast operator rounds the number down when converting it from a
float to an integer, because an integer number cannot represent the fractional part after the
decimal point. Note that C always truncates, or rounds down, a number when converting
it to an integer. For example, both 3.1 and 3.9 are truncated to 3 when C is converting
them to integer values.

The cast operator works the other way around, too:

float exact_length;
int rough_length;

rough_length = 12;
exact_length = (float) rough_length;

In converting large integers to floating point numbers, you may lose some precision, since
the float type guarantees only 6 significant digits, and the double type guarantees only
10.

It does not always make sense to convert types. (See Chapter 20 [Data structures],
page 205, for examples of types that do not convert to other types well.)

5.4.1 Cast operator demo
The following is an example of how to use the cast operator in C code. It also shows

how to use an integer variable to store a character value.

/***/

/* */
/* Demo of Cast operator */
/* */

/3K 3Kk ok sk ok ok ok sk ok K ok ok K ok ok 3 ok K 3 ok 3 ok ok 3 ok ok 3 ok 3 3k ok 3 ok ok 3 ok ok ok 3k K ok ok ok k ok ok /
#include <stdio.h>

int main() /* Use int float and int */
{

float my_float;

int my_int;

int my_ch;

my_float = 75.345;

my_int = (int) my_float;

my_ch = (int) my_float;

printf ("Convert from float my_float=Yf to my_int=)id and my_ch=Yc\n",
my_float, my_int, my_ch);

my_int = 69;
my_float = (float) my_int;
my_ch = my_int;

24 Chapter 5: Variables and declarations

printf ("Convert from int my_int=Jd to my_float=Jf and my_ch=%c\n",
my_int, my_float, my_ch);

my_ch = ’%7;

my_int = my_ch;

my_float = (float) my_ch;

printf ("Convert from int my_ch=Yc to my_int=}d and my_float=%f\n",
my_ch, my_int, my_float);

exit (0);
}

Here is the sort of output you should expect (floating point values may differ slightly):

Convert from float my_float=75.345001 to my_int=75 and my_ch=K
Convert from int my_int=69 to my_float=69.000000 and my_ch=E
Convert from int my_ch=* to my_int=42 and my_float=42.000000

5.5 Storage classes

There are a few variable declaration keywords commonly used in C that do not specify
variable types, but a related concept called storage classes. Two common examples of
storage class specifiers are the keywords extern and static.

5.5.1 External variables

Sometimes the source code for a C program is contained in more than one text file. If
this is the case, then it may be necessary to use variables that are defined in another file.
You can use a global variable in files other than the one in which it is defined by redeclaring
it, prefixed by the extern specifier, in the other files.

File main.c File secondary.c

#include <stdio.h>
int my_var;
int main()

{
extern int my_var; void print_value()
{
my_var = 500; printf ("my_var = %d\n", my_var);
print_value(); }
exit (0);
}

In this example, the variable my_var is created in the file ‘secondary.c’, assigned a value
in the file ‘main.c’, and printed out in the function print_value, which is defined in the
file ‘secondary.c’, but called from the file ‘main.c’.

See Section 17.4 [Compiling multiple files|, page 172, for information on how to compile
a program whose source code is split among multiple files. For this example, you can

Questions for Chapter 5 25

simply type the command gcc -o testprog main.c secondary.c, and run the program
with ./testprog.

5.5.2 Static variables

A second important storage class specifier is static. Normally, when you call a function,
all its local variables are reinitialized each time the function is called. This means that
their values change between function calls. Static variables, however, maintain their value
between function calls.

Every global variable is defined as static automatically. (Roughly speaking, functions
anywhere in a program can refer to a global variable; in contrast, a function can only
refer to a local variable that is “nearby”, where “nearby” is defined in a specific manner.
See Chapter 6 [Scopel, page 27, for more information on global variables. See Chapter 7
Expressions and operators|, page 31, for an example of a static local variable.)

5.5.3 Other storage classes

There are three more storage class identifiers in C: auto, register, and typedef.

e auto is the opposite of static. It is redundant, but is included in contemporary
versions of C for backwards compatibility. All local variables are auto by default.

e register is another outdated C storage class. Defining a variable as register used
to store it in one of the computer’s registers, a specific location on its processor chip,
thereby making code using that variable run faster. These days, most C compilers
(including GCC) are smart enough to optimize the code (make it faster and more
compact) without the register keyword.

e typedef allows you to define your own variable types. See Chapter 19 [More data
types|, page 197, for more information.

5.6 Questions for Chapter 5

1. What is an identifier?

2. Which of the following are valid C variable names?
Ralph23

80shillings

mission_control

A%

A$

_off

3. Write a statement to declare two integers called start_temperature and end_
temperature.

4. What is the difference between the types float and double?

AN o A

26

© w N o

10.

Chapter 5: Variables and declarations

What is the difference between the types int and unsigned int?

Write a statement that assigns the value 1066 to the integer variable norman.

What data type do C functions return by default?

You must declare the data type a function returns at two places in a program. Where?

Write a statement, using the cast operator, to print out the integer part of the number
23.1256.

Is it possible to have an automatic global variable?

Global Variables 27

6 Scope

Where a program’s fingers can and can’t reach.

Imagine that a function is a building with a person (Fred) standing in the doorway.
This person can see certain things: other people and other buildings, out in the open. But
Fred cannot see certain other things, such as the people inside the other buildings. Just so,
some variables in a C program, like the people standing outside, are visible to nearly every
other part of the program (these are called global variables), while other variables, like the
people indoors, are hidden behind the “brick walls” of curly brackets (these are called local
variables).

Where a variable is visible to other C code is called the scope of that variable. There
are two main kinds of scope, global and local, which stem from the two kinds of places in
which you can declare a variable:

1. Global scope is outside all of the functions, that is, in the space between function
definitions — after the #include lines, for example. Variables declared in global scope
are called global variables. Global variables can be used in any function, as well as in
any block within that function.

#include <stdio.h>

int global_integer;
float global_floating_point;

int main ()

{
exit (0);
}

2. You can also declare variables immediately following the opening bracket (‘{’) of any
block of code. This area is called local scope, and variables declared here are called
local variables. A local variable is visible within its own block and the ones that block
contains, but invisible outside its own block.

#include <stdio.h>

int main()
{
int foo;
float bar, bas, quux;

exit (0);
+

6.1 Global Variables

Global variables can be used in any function, as well as any block within that function.
(Technically, global variables can only be seen by functions that are defined after the dec-

28 Chapter 6: Scope

laration of those global variables, but global variables are usually declared in a header file
that is included everywhere they are needed.) Global variables are created when a program
is started and are not destroyed until a program is stopped.

6.2 Local Variables

Local variables, on the other hand, are only visible within local scope. They are
“trapped” inside their code blocks.

Just as global scope contains many functions, however, each function can contain many
code blocks (defined with curly brackets: ‘{...}’). C allows blocks within blocks, even
functions within functions, ad infinitum. A local variable is visible within its own block and
the ones that block contains, but invisible outside its own block.

int a;

/* Global scope. Global variable ’a’ is visible here,
but not local variables ’b’ or ’c’. */

int main()

{
int b;
/* Local scope of ’main’.
Variables ’a’ and ’b’ are visible here,
but not ’c’. */
{
int c;
/* Local scope of ‘{...}’ block within ’main’.
Variables ’a’, ’b’, and ’c’ are all visible here. */
}
exit (0);
}

Local variables are not visible outside their curly brackets. To use an “existence” rather
than a “visibility” metaphor, local variables are created when the opening brace is met, and
they are destroyed when the closing brace is met. (Do not take this too literally; they are
not created and destroyed in your C source code, but internally to the computer, when you
run the program.)

6.3 Communication via parameters

If no code inside a function could ever communicate with other parts of the program,
then functions would not be very useful. Functions would be isolated, comatose, unable to
do much of anything. Fortunately, although local variables are invisible outside their code

Questions for Chapter 6 29

blocks, they can still communicate with other functions via parameters. See Chapter 7
[Expressions and operators|, page 31, the next chapter, for information on parameters.

6.4 Scope example

Notice that there are two variables named my_var in the example below, both visible
in the same place. When two or more variables visible in one area of code have the same
name, the last variable to be defined takes priority. (Technically adept readers will realize
that this is because it was the last one onto the variable stack.)

/***/

/* */
/* SCOPE */
/* */

/3K 3K ok sk ok ok sk ok ok 3 ok ok 3k ok 3 ok ok 3 ok ok 3 ok 3K 3 ok 3k 3K ok 3 ok ok 3 ok K 3 ok 3 3k ok 3 ok ok 3 ok ok 3 ok 3k K ok 3 ok ok ok ok K ok kK ok /
#include <stdio.h>

int main ()
{

int my_var = 3;

{
int my_var = 5;
printf ("my_var=Y%d\n", my_var);

¥

printf ("my_var=%d\n", my_var);

exit (0);
+

When you run this example, it will print out the following text:
my_var=5
my_var=3

6.5 Questions for Chapter 6

What is a global variable?
What is a local variable?

Do parameters spoil functions by leaking the variables into other functions?

- W N

Write a program gnoahs_park that declares 4 variables. Two global integer variables
called num_gnus and num_gnats, and two local floating point variables within the func-
tion main, called avg_gnu_mass, and avg_gnat_mass. Then add another function
called calculate_park_biomass, and pass avg_gnu_mass and avg_gnat_mass to it.
How many different storage spaces are used when this program runs? (Hint: are avg_
gnu_mass and avg_gnat_mass and their copies the same?)

30

Chapter 6: Scope

The assignment operator 31

7 Expressions and operators

Thinking in C. Short strings of code.

An operator is a character or string of characters used as a built-in function. We have
already experimented with one operator in C: the cast operator.

An operator is so called because it takes one or more values and operates on them to
produce a result. For example, the addition operator + can operate on the values 4 and 5
to produce the result 9. Such a procedure is called an operation, and any value operated
on (such as 4 and 5 in this example) is called an operand.

There are many operators in C. Some of them are familiar, such as the addition operator
+ and subtraction operator —. Most operators can be thought of as belonging to one of three
groups, according to what they do with their operands:

e Mathematical operators, such as the addition operator + in 100 + 500, or the multipli-
cation operator * in 12 * 2.

e Comparison operators (a subset of mathematical operators), such as the less-than op-
erator < and the greater-than operator >.

e Operators that produce new variable types, such as the cast operator.

The majority of operators fall into the first group. The second group is a subset of the
first set; in this second set, the result of an operation is a Boolean value (a value of either
true or false).

C has about forty different operators. The chief object of this chapter is to explain the
basic operators in C. We will examine more complex operators in another chapter. (See
Chapter 18 [Advanced operators|, page 185.)

7.1 The assignment operator

No operator such as addition (+) or multiplication (*) would be useful without another
operator that attaches the values they produce to variables. Thus, the assignment operator
= is perhaps the most important mathematical operator.

We have seen the assignment operator already in our code examples. Here is an example
to refresh your memory:

int gnu_count, gnat_count, critter_count;

gnu_count = 45;
gnat_count = 5678;

critter_count = gnu_count + gnat_count;

The assignment operator takes the value of whatever is on the right-hand side of the =
symbol and puts it into the variable on the left-hand side. For example, the code sample
above assigns the value 45 to the variable gnu_count.

32 Chapter 7: Expressions and operators

Something that can be assigned to is called an Ivalue, (“I” for “left”, because it can
appear on the left side of an assignment). You will sometimes see the word ‘lvalue’ in
error messages from the compiler. For example, try to compile a program containing the
following code:

5 =2+ 3;

You will receive an error such as the following:

bad_example.c:3: invalid lvalue in assignment

You can’t assign a value to 5; it has its own value already! In other words, 5 is not an
lvalue.

7.1.1 Important note about assignment

Many people confuse the assignment operator (=) with the equality operator (==), and
this is a major source of bugs in C programs. Because of early arithmetic training, people
tend to think of = as indicating equality, but in C it means “takes on the value produced by”,
and it should always be read that way. By way of contrast, == is an equality test operator
and should always be read “is tested for equality with”. (See Section 7.8 [Comparisons and
logic|, page 37, for more information on the == operator.)

7.2 Expressions and values

The most common operators in any language are basic arithmetic operators. In C, these
include the following:

+ unary plus, example: +5
- unary minus, example: -5
+ addition, example: 2 + 2

- subtraction, example: 14 - 7

* multiplication, example: 3 * 3
/ floating point division, example: 10.195 / 2.4
/ integer division div, example: 5 / 2

yA integer remainder mod, example: 24 % 7

Expressions 33

7.3 Expressions

An expression is simply a string of operators, variables, numbers, or some combination,
that can be parsed by the compiler. All of the following are expressions:

19
1 +2+ 3
my_var

my_var + some_function()
(my_var + 4 * (some_function() + 2))
32 * circumference / 3.14

day_of_month % 7
Here is an example of some arithmetic expressions in C:
#include <stdio.h>

int main ()

{
int my_int;
printf ("Arithmetic Operators:\n\n");
my_int = 6;
printf ("my_int = %d, -my_int = %d\n", my_int, -my_int);
printf ("int 1 + 2 = %d\n", 1 + 2);
printf ("int 5 - 1 = %d\n", 5 - 1);
printf ("int 5 * 2 = %d\n", 5 * 2);
printf ("\n9 div 4 = 2 remainder 1:\n");
printf ("int 9 / 4 = %d\n", 9 / 4);
printf ("int 9 % 4 = Yd\n", 9 % 4);
printf ("double 9 / 4 = %f\n", 9.0 / 4.0);
return O;

}

The program above produces the output below:
Arithmetic Operators:

my_int = 6, -my_int = -6
int 1 + 2 =23
int 5 -1=4

34 Chapter 7: Expressions and operators

int 5 * 2 = 10

9 div 4 = 2 remainder 1:
int 9/ 4 =2
int 9 % 4 =1

double 9 / 4 = 2.250000

7.4 Parentheses and Priority

Just as in algebra, the C compiler considers operators to have certain priorities, and eval-
uates, or parses, some operators before others. The order in which operators are evaluated
is called operator precedence or the order of operations. You can think of some operators
as “stronger” than others. The “stronger” ones will always be evaluated first; otherwise,
expressions are evaluated from left to right.

For example, since the multiplication operator * has a higher priority than the addition
operator + and is therefore evaluated first, the following expression will always evaluate to
10 rather than 18:

4 + 2 x 3

However, as in algebra, you can use parentheses to force the program to evaluate the

expression to 18:
(4 +2) x 3

The parentheses force the expression (4 + 2) to be evaluated first. Placing parentheses
around 2 * 3, however, would have no effect.

Parentheses are classed as operators by the compiler; they have a value, in the sense

that they assume the value of whatever is inside them. For example, the value of (5 + 5)
is 10.

7.5 Unary Operator Precedence

Unary operators are operators that have only a single operand — that is, they operate
on only one object. The following are (or can be) all unary operators:
++ - o+ -
The order of evaluation of unary operators is from right to left, so an expression like:
*ptr++;
would perform the ++ before the *. (The ++ operator will be introduced in the next section,
and the * operator will be introduced in the next chapter. See Chapter 9 [Pointers|, page 47.)

7.6 Special Assignment Operators ++ and --

C has some special operators that can simplify code. The simplest of these are the
increment and decrement operators:

More Special Assignments 35

++ increment: add one to
- decrement: subtract one from

You can use these with any integer or floating point variable (or a character in some cases,
carefully). They simply add or subtract 1 from a variable. The following three statements
are equivalent:

variable = variable + 1;
variable++;
++variable;

So are these three:

variable = variable - 1;
variable——;
—--variable;

Notice that the ++ and -- operators can be placed before or after the variable. In the
cases above, the two forms work identically, but there is actually a subtle difference. (See
Section 18.1.2 [Postfix and prefix ++ and —|, page 187, for more information.)

7.7 More Special Assignments

Like ++ and --, the following operators are short ways of writing longer expressions.
Consider the following statement:

variable = variable + 23;

In C, this would be a long-winded way of adding 23 to variable. It could be done more
simply with the general increment operator +=, as in this example:

variable += 23;

This performs exactly the same operation. Similarly, the following two statements are
equivalent:

variablel = variablel + variable2;
variablel += variable2;

There are a handful of these operators. For example, one for subtraction:

variable = variable - 42;
variable —-= 42;

More surprisingly, perhaps, there is one for multiplication:

variable = variable * 2;
variable *= 2;

The main arithmetic operators all follow this pattern:
+= addition assignment operator
-= subtraction assignment operator
*= multiplication assignment operator
/= division assignment operator (floating point and integers)

h= remainder assignment operator (integers only)

36 Chapter 7: Expressions and operators

There are more exotic kinds too, used for machine-level operations, which we will ignore
for the moment. (See Chapter 18 [Advanced operators|, page 185, if you want to know
more.)

Here is a short program that demonstrates these special assignment operators:

#include <stdio.h>

int main()

{
int my_int;
printf ("Assignment Operators:\n\n");
my_int = 10; /* Assignment */
printf ("my_int = 10 : %d\n",my_int);
my_int++; /* my_int = my_int + 1 %/
printf ("my_int++ : %d\n",my_int);
my_int += 5; /* my_int = my_int + 5 %/
printf ("my_int += 5 : %d\n",my_int);
my_int--; /* my_int = my_int = 1 */
printf ("my_int-- ¢ %d\n",my_int);
my_int -= 2; /* my_int = my_int - 2 %/
printf ("my_int -= 2 : %d\n",my_int);
my_int *= 5; /* my_int = my_int * 5 %/
printf ("my_int *= 5 : %d\n",my_int);
my_int /= 2; /* my_int = my_int / 2 */
printf ("my_int /= 2 : %d\n",my_int);
my_int %= 3; /* my_int = my_int % 3 */
printf ("my_int %%= 3 : %d\n",my_int);
return O;

}

The program above produces the output below:

Assignment Operators:

my_int = 10 : 10

my_int++ 11
my_int += 5 : 16
my_int-- . 15
my_int -= 2 : 13

my_int *= 5 : 65
my_int /= 2 : 32

Comparisons and logic 37

my_int %= 3 : 2
The second to last line of output is
my_int /= 2 : 32
In this example, 65 divided by 2 using the /= operator results in 32, not 32.5. This is
because both operands, 65 and 2, are integers, type int, and when /= operates on two
integers, it produces an integer result. This example only uses integer values, since that is

how the numbers are declared. To get the fractional answer, you would have had to declare
the three numbers involved as floats.

The last line of output is
my_int %= 3 : 2
This is because 32 divided by 3 is 10 with a remainder of 2.

7.8 Comparisons and logic

Comparison operators tell you how numerical values relate to one another, such as
whether they are equal to one another, or whether one is greater than the other. Comparison
operators are used in logical tests, such as if statements. (See Chapter 10 [Decisions,
page 55.)

The results of a logical comparison are always either true (1) or false (0). In computer
programming jargon, true and false are the two Boolean values. Note that, unlike real life,
there are no “gray areas” in C; just as in Aristotelian logic, a comparison operator will
never produce a value other than true or false.

Six operators in C are used to make logical comparisons:
== is equal to

= is not equal to

> is greater than

< is less than

>= is greater than or equal to
<= is less than or equal to

Important: Remember that many people confuse the equality operator (==) with the as-
signment operator (=), and this is a major source of bugs in C programs. (See Section 7.2
Expressions and values|, page 32, for more information on the distinction between the ==
and = operators.)

The operators above result in values, much as the addition operator + does. They
produce Boolean values: true and false only. Actually, C uses 1 for “true” and 0 for “false”
when evaluating expressions containing comparison operators, but it is easy to define the
strings ‘TRUE’ and ‘FALSE’ as macros, and they may well already be defined in a library
file you are using. (See Chapter 12 [Preprocessor directives|, page 73, for information on
defining macros.)

38 Chapter 7: Expressions and operators

#define TRUE 1
#define FALSE O
Note that although any non-zero value in C is treated as true, you do not need to worry
about a comparison evaluating to anything other than 1 or 0. Try the following short
program:
#include <stdio.h>

int main ()

{
int truth, falsehood;

truth = (2 + 2 == 4);
falsehood = (2 + 2 == 5);

printf ("truth is %d\n", truth);
printf ("falsehood is %d\n", falsehood);

exit (0);
}

You should receive the following result:

truth is 1
falsehood is O

7.9 Logical operators

Comparisons are often made in pairs or groups. For example, you might want to ask a
question such as, “Is variable a greater than variable b and is variable b greater than variable
c?” The word “and” in the question above is represented in C by the logical operator (an
“operator on Boolean values”) &&, and the whole comparison above might be represented
by the following expression:

(a>b) & (b > <)
The main logical operators in C are as follows:

&& logical AND
| logical Inclusive OR (See Section 7.9.1 [Inclusive ORJ, page 38.)
! logical NOT

Here is another example. The question, “Is the variable a greater than the variable b,
or is the variable a not greater than the variable c¢?” might be written:

(a>b) |l '(a>c)

7.9.1 Inclusive OR

Note well! Shakespeare might have been disappointed that, whatever the value of a
variable to_be, the result of

Questions for Chapter 7 39

to_be || !to_be
(i.e. “To be, or not to be?”) is always 1, or true. This is because one or the other of to_be
or !'to_be must always be true, and as long as one side of an OR || expression is true, the
whole expression is true.

7.10 Questions for Chapter 7

1. What is an operand?

2. Write a short statement that assigns the remainder of 5 divided by 2 to a variable
called remainder and prints it out.

3. Write a statement that subtracts -5 from 10.

40

Chapter 7: Expressions and operators

Parameters 41

8 Parameters

Ways in and out of functions.

Parameters are the main way in C to transfer, or pass, information from function to
function. Consider a call to our old friend calculate_bill:

total = calculate_bill (20, 35, 28);

We are passing 20, 35, and 28 as parameters to calculate_bill so that it can add them
together and return the sum.

When you pass information to a function with parameters, in some cases the information
can go only one way, and the function returns only a single value (such as total in the
above snippet of code). In other cases, the information in the parameters can go both ways;
that is, the function called can alter the information in the parameters it is passed.

The former technique (passing information only one way) is called passing parameters
by value in computer programming jargon, and the latter technique (passing information
both ways) is referred to as passing parameters by reference.

For our purposes, at the moment, there are two (mutually exclusive) kinds of parameters:

e Value parameters are the kind that pass information one-way. They are so-called
because the function to which they are passed receives only a copy of their values,
and they cannot be altered as variable parameters can. The phrase “passing by value”
mentioned above is another way to talk about passing “value parameters”.

e Variable parameters are the kind that pass information back to the calling function.
They are so called because the function to which they are passed can alter them, just as
it can alter an ordinary variable. The phrase “passing by reference” mentioned above
is another way to talk about passing “variable parameters”.

Consider a slightly-expanded version of calculate_bill:
#include <stdio.h>

int main (void);
int calculate_bill (int, int, int);

int main()

{
int bill;
int fred = 25;
int frank = 32;
int franny = 27;

bill = calculate_bill (fred, frank, franny);
printf ("The total bill comes to $%d.00.\n", bill);

exit (0);
+

int calculate_bill (int dinerl, int diner2, int diner3)

42 Chapter 8: Parameters

{
int total;

total = dinerl + diner2 + diner3;
return total;

¥

Note that all of the parameters in this example are value parameters: the information
flows only one way. The values are passed to the function calculate_bill. The original
values are not changed. In slightly different jargon, we are “passing the parameters by value
only”. We are not passing them “by reference”; they are not “variable parameters”.

All parameters must have their types declared. This is true whether they are value
parameters or variable parameters. In the function calculate_bill above, the value pa-
rameters dinerl, diner2, and diner3 are all declared to be of type int.

8.1 Parameters in function prototypes

Note that in the function prototype for calculate_bill, the parameter names were
completely omitted. This is perfectly acceptable in ANSI C, although it might be confusing
to someone trying to understand your code by reading the function prototypes, which can
be in a separate file from the functions themselves. For instance, in the code example above,
the function prototype for calculate_bill looks like this:

int calculate_bill (int, int, int);

You may include parameter names in function prototypes if you wish; this is usually a
good idea when the function prototype is significantly separated from the function definition,
such as when the prototype is in a header file or at the top of a long file of function definitions.
For example, we could have written the prototype for calculate_bill thus:

int calculate_bill (int dinerl, int diner2, int diner3);

Parameter names in a function prototype do not need to match the names in the func-
tion’s definition; only their types need to match. For example, we can also write the function
prototype above in this way:

int calculate_bill (int guestl, int guest2, int guest3);

As usual, it is a good idea to use mnemonic names for the parameters in a function
prototype, as in the last two examples.! Thus, the function prototype below is not as
helpful to the person reading your code as the last two examples are; it might just as well
have been written without variable names at all:

int calculate_bill (int variablel, int variable2, int variable3);

8.2 Value Parameters

! That is, unless you are competing in The International Obfuscated C Code Contest
(http://www.ioccc.org/).

Actual parameters and formal parameters 43

When you are passing data to a function by value, the parameters in the function you
are passing the data to contain copies of the data in the parameters you are passing the
data with. Let us modify the function main from the last example slightly:

int main()

{
int bill;
int fred = 25;
int frank = 32;
int franny = 27;

bill

calculate_bill (fred, frank, franny);

fred 20000;
frank = 50000;
franny = 20000;

printf ("The total bill comes to $%d.00.\n", bill);

exit (0);
}

As far as the function calculate_bill is concerned, fred, frank, and franny are still
25, 32, and 27 respectively. Changing their values to extortionate sums after passing them
to calculate_bill does nothing; calculate_bill has already created local copies of the
parameters, called diner1, diner2, and diner3 containing the earlier values.

Important: Even if we named the parameters in the definition of calculate_bill to
match the parameters of the function call in main (see example below), the result would be
the same: main would print out ‘$84.00’, not ‘$90000.00’. When passing data by value,
the parameters in the function call and the parameters in the function definition (which are
only copies of the parameters in the function call) are completely separate.

Just to remind you, this is the calculate_bill function:

int calculate_bill (int fred, int frank, int franny)

{
int total;

total = fred + frank + franny;
return total;

}

8.3 Actual parameters and formal parameters

There are two other categories that you should know about that are also referred to as
“parameters”’. They are called “parameters” because they define information that is passed
to a function.

e Actual parameters are parameters as they appear in function calls.

44 Chapter 8: Parameters

e Formal parameters are parameters as they appear in function declarations.

A parameter cannot be both a formal and an actual parameter, but both formal param-
eters and actual parameters can be either value parameters or variable parameters.

Let’s look at calculate_bill again:

#include <stdio.h>

int main (void);
int calculate_bill (int, int, int);

int main()

{
int bill;
int fred = 25;
int frank = 32;
int franny = 27;

bill = calculate_bill (fred, frank, franny);
printf ("The total bill comes to $%d.00.\n", bill);

exit (0);
}

int calculate_bill (int dinerl, int diner2, int diner3)

{
int total;

total = dinerl + diner2 + diner3;
return total;

}

In the function main in the example above, fred, frank, and franny are all actual
parameters when used to call calculate_bill. On the other hand, the corresponding
variables in calculate_bill (namely dinerl, diner2 and diner3, respectively) are all
formal parameters because they appear in a function definition.

Although formal parameters are always variables (which does not mean that they are
always variable parameters), actual parameters do not have to be variables. You can use
numbers, expressions, or even function calls as actual parameters. Here are some examples
of valid actual parameters in the function call to calculate_bill

bill = calculate_bill (25, 32, 27);
bill = calculate_bill (50+60, 25*2, 100-75);
bill = calculate_bill (fred, franny, (int) sqrt(25));

(The last example requires the inclusion of the math routines in ‘math.h’, and compilation
with the ‘-1m’ option. sqrt is the square-root function and returns a double, so it must be
cast into an int to be passed to calculate_bill.)

Questions for Chapter 8 45

8.4 Variadic functions

Suppose you are writing a program that repeatedly generates lists of numbers that can
run anywhere from one to fifty items. You never know how many numbers a particular
list will contain, but you always want to add all the numbers together. Passing them to
an ordinary C function will not work, because an ordinary function has a fixed number of
formal parameters, and cannot accept an arbitrarily long list of actual parameters. What
should you do?

One way of solving this problem is to use a variadic function, or function that can accept
arbitrarily long lists of actual parameters. You can do this by including the ‘stdarg.h’
header in your program. For example, with ‘stdarg.h’, you can write a function called
add_all that will add all integers passed to it, returning correct results for all of the
following calls:

sum = add_all (2, 3, 4);
sum = add_all (10, 150, 9, 81, 14, 2, 2, 31);
sum = add_all (4);

Unfortunately, the use of ‘stdarg.h’ is beyond the scope of this tutorial. For more infor-
mation on variadic functions, see the GNU C Library manual (http://www.gnu.org/manual/glibc-2.0.6/

8.5 Questions for Chapter 8

What is the difference between a value parameter and a variable parameter?
What is the difference between a formal parameter and an actual parameter?
What does passing by reference let you do that passing by value doesn’t?

Can a function call be used as an actual parameter?

SANE I A

Do actual and formal parameters need to have the same names?

46

Chapter 8: Parameters

Pointer operators 47

9 Pointers

Making maps of data.

In one sense, any variable in C is just a convenient label for a chunk of the computer’s
memory that contains the variable’s data. A pointer, then, is a special kind of variable that
contains the location or address of that chunk of memory. (Pointers are so called because
they point to a chunk of memory.) The address contained by a pointer is a lengthy number
that enables you to pinpoint exactly where in the computer’s memory the variable resides.

Pointers are one of the more versatile features of C. There are many good reasons to use
them. Knowing a variable’s address in memory enables you to pass the variable to a function
by reference (See Section 9.4 [Variable parameters|, page 51.)! Also, since functions are just
chunks of code in the computer’s memory, and each of them has its own address, you can
create pointers to functions too, and knowing a function’s address in memory enables you to
pass functions as parameters too, giving your functions the ability to switch among calling
numerous functions. (See [Function pointers|, page 286.)

Pointers are important when using text strings. In C, a text string is always accessed
with a pointer to a character — the first character of the text string. For example, the
following code will print the text string ‘Boy howdy!’:

char *greeting = "Boy howdy!";
printf ("%s\n\n", greeting);
See Chapter 15 [Strings|, page 105.

Pointers are important for more advanced types of data as well. For example, there
is a data structure called a “linked list” that uses pointers to “glue” the items in the list
together. (See Chapter 20 [Data structures|, page 205, for information on linked lists.)

Another use for pointers stems from functions like the C input routine scanf. This
function accepts information from the keyboard, just as printf sends output to the console.
However, scanf uses pointers to variables, not variables themselves. For example, the
following code reads an integer from the keyboard:

int my_integer;
scanf ("%d", &my_integer);

(See Section 16.2.9.1 [scanf], page 141, for more information.)

9.1 Pointer operators

To create a pointer to a variable, we use the * and & operators. (In context, these have
nothing to do with multiplication or logical AND. For example, the following code declares
a variable called total_cost and a pointer to it called total_cost_ptr.

float total_cost;
float *total_cost_ptr;

1 This, by the way, is how the phrase “pass by reference” entered the jargon. Like other
pointers, a variable parameter “makes a reference” to the address of a variable.

48 Chapter 9: Pointers

total_cost_ptr = &total_cost;

The ‘*’ symbol in the declaration of total_cost_ptr is the way to declare that variable
to be a pointer in C. (The ‘_ptr’ at the end of the variable name, on the other hand, is just
a way of reminding humans that the variable is a pointer.)

When you read C code to yourself, it is often useful to be able to pronounce C’s operators
aloud; you will find it can help you make sense of a difficult piece of code. For example,
you can pronounce the above statement float *total_cost_ptr as “Declare a float pointer
called total_cost_ptr”, and you can pronounce the statement total_cost_ptr = &total_
cost; as “Let total_cost_ptr take as its value the address of the variable total_cost”.

Here are some suggestions for pronouncing the * and & operators, which are always
written in front of a variable:

* “The contents of the address held in variable” or “the contents of the location
pointed to by variable”.

& “The address of variable” or “the address at which the variable variable is
stored”.

For instance:

&fred “The address of fred” or “the address at which the variable fred is stored”.

*fred_ptr
“The contents of the address held in fred_ptr” or “the contents of the location
pointed to by fred_ptr”.

The following examples show some common ways in which you might use the * and &
operators:

int some_var; /* 1 %/
“Declare an integer variable called some_var.”

int *ptr_to_some_var; /* 2 x/
“Declare an integer pointer called ptr_to_some_var.” (The

* in front of ptr_to_some_var is the way C declares
ptr_to_some_var as a pointer to an integer, rather than just an
integer.)

some_var = 42; /* 3 x/
“Let some_var take the value 42.”

Pointer types 49

ptr_to_some_var = &some_var; /x 4 x/

“Let ptr_to_some_var take the address of the variable
some_var as its value.” (Notice that only now does
ptr_to_some_var become a pointer to the particular variable
some_var — before this, it was merely a pointer that could
point to any integer variable.)

printf ("%d\n\n", *ptr_to_some_var); /* 5 x/

“Print out the contents of the location pointed to by
ptr_to_some_var.” (In other words, print out some_var

itself. This will print just 42. Accessing what a pointer points to in
this way is called dereferencing the pointer, because the pointer

is considered to be referencing the variable.)

ptr_to_some_var = 56; / 6 */ “Let the contents of the location
pointed to by ptr_to_some_var equal 56.” (In the context of the
other statements, this is the same as the more direct statement
some_var = 56;.)

A subtle point: don’t confuse the usage of asterisks in code like examples 2 and 6 above.
Using an asterisk in a declaration, as in example 2, declares the variable to be a pointer,
while using it on the left-hand side of an assignment, as in example 6, dereferences a variable
that is already a pointer, enabling you to access the variable to which the pointer is pointing.

9.2 Pointer types

Pointers can point to any type of variable, but they must be declared to do so. A pointer
to an integer is not the same type of variable as a pointer to a float or other variable type.
At the “business end” of a pointer is usually a variable, and all variables have a type.

Here are some examples of different types of pointer:

int *my_integer_ptr;
char *my_character_ptr;
float *my_float_ptr;

double *my_double_ptr;

However, GCC is fairly lenient about casting different types of pointer to one another
implicitly, or automatically, without your intervention. For example, the following code will
simply truncate the value of *float_ptr and print out 23. (As a bonus, pronunciation is
given for every significant line of the code in this example.)

#include <stdio.h>
/* Include the standard input/output header in this program */

int main()
/* Declare a function called main that returns an integer
and takes no parameters */

50

Chapter 9: Pointers

int *integer_ptr;
/* Declare an integer pointer called integer_ptr */

float *float_ptr;
/* Declare a floating-point pointer called float_ptr */

int my_int = 17;
/* Declare an integer variable called my_int
and assign it the value 17 */

float my_float = 23.5;
/* Declare a floating-point variable called my_float
and assign it the value 23.5 %/

integer_ptr = &my_int;
/* Assign the address of the integer variable my_int
to the integer pointer variable integer_ptr */

float_ptr = &my_float;
/* Assign the address of the floating-point variable my_float
to the floating-point pointer variable float_ptr */

*integer_ptr = *float_ptr;

/* Assign the contents of the location pointed to by
the floating-point pointer variable float_ptr
to the location pointed to by the integer pointer variable
integer_ptr (the value assigned will be truncated) */

printf ("%d\n\n", *integer_ptr);
/* Print the contents of the location pointed to by the
integer pointer variable integer_ptr */

return O;
/* Return a value of 0, indicating successful execution,
to the operating system */

There will still be times when you will want to convert one type of pointer into another.

For example, GCC will give a warning if you try to pass float pointers to a function that
accepts integer pointers. Not treating pointer types interchangeably will also help you
understand your own code better.

To convert pointer types, use the cast operator. (See Section 5.4 [The cast operator|,

page 22.) As you know, the general form of the cast operator is as follows:

(type) variable

Here is the general form of the cast operator for pointers:

(type *) pointer_variable

Here is an actual example:

Variable parameters 51

int *my_integer_ptr;
long *my_long_ptr;

my_long_ptr = (long *) my_integer_ptr;
This copies the value of the pointer my_integer to the pointer my_long_ptr. The cast

operator ensures that the data types match. (See Chapter 20 [Data structures|, page 205,
for more details on pointer casting.)

9.3 Pointers and initialization

You should not initialize pointers with a value when you declare them, although the
compiler will not prevent this. Doing so simply makes no sense. For example, think about
what happens in the following statement:

int *my_int_ptr = 2;

First, the program allocates space for a pointer to an integer. Initially, the space will contain
garbage (random data). It will not contain actual data until the pointer is “pointed at”
such data. To cause the pointer to refer to a real variable, you need another statement,
such as the following:
my_int_ptr = &my_int;

On the other hand, if you use just the single initial assignment, int *my_int_ptr = 2;,
the program will try to fill the contents of the memory location pointed to by my_int_ptr
with the value 2. Since my_int_ptr is filled with garbage, it can be any address. This
means that the value 2 might be stored anywhere. anywhere, and if it overwrites something
important, it may cause the program to crash.

The compiler will warn you against this. Heed the warning!

9.4 Variable parameters

Now that you know something about pointers, we can discuss variable parameters and
passing by reference in more detail. (See Chapter 8 [Parameters|, page 41, to refresh your
memory on this topic.)

There are two main ways to return information from a function. The most common way
uses the return command. However, return can only pass one value at a time back to the
calling function. The second way to return information to a function uses variable param-
eters. Variable parameters (“passing by reference”) enable you to pass back an arbitrary
number of values, as in the following example:

#include <stdio.h>

int main();
void get_values (int *, int *);

int main()

{

52 Chapter 9: Pointers

int numl, num2;
get_values (&numl, &num2);

printf ("numl = %d and num2 = %d\n\n", numl, num?2);

return O;

void get_values (int *num_ptrl, int *num_ptr2)

{

*num_ptrl
*num_ptr2

10;
20;

¥

The output from this program reads:
numl = 10 and num2 = 20

Note that we do use a return command in this example — in the main function. Remember,
main must always be declared of type int and should always return an integer value. (See
Chapter 22 [Style|, page 227.)

When you use value parameters, the formal parameters (the parameters in the function
being called) are mere copies of the actual parameters (the parameters in the function call).
When you use variable parameters, on the other hand, you are passing the addresses of
the variables themselves. Therefore, in the program above, it is not copies of the variables
numl and num?2 that are passed to get_values, but the addresses of their actual memory
locations. This information can be used to alter the variables directly, and to return the
new values.

9.4.1 Passing pointers correctly

You might be wondering why main calls the function get_values above with ampersands
before the parameters —

get_values (&numl, &num2);
— while the function itself is defined with asterisks before its parameters:

void get_values (int *num_ptrl, int *num_ptr2)
{

*num_ptrl = 10;

*num_ptr2 = 20;

}

Think carefully for a moment about what is happening in these fragments of code. The
variables numl and num2 in main are ordinary integers, so when main prefixes them with
ampersands (&) while passing them to get_values, it is really passing integer pointers.
Remember, &num1 should be read as “the address of the variable num1”.

The code reads like this:

Another variable parameter example 53

get_values (&numl, &num?2);

“Evaluate the function get_values, passing to it the
addresses at which the variables num1 and num2 are stored.”.

The function get_values is defined like this:

void get_values (int *num_ptrl, int *num_ptr2)

“Define the function get_values. It returns a void

value (so it operates only via “side effects” on the variable

parameters it is passed). It takes two parameters, both of type

int *. The first parameter is called num_ptr1 and is a

pointer to an integer value, and the second parameter is called
num_ptr2 and is also a pointer to an integer value. When this
function is called, it must be passed the addresses of variables, not the
variables themselves.”

Remember that declaring a variable with an asterisk (*) before it means “declare this
variable to be a pointer”, so the formal parameters of get_values are integer pointers. The
parameters must be declared this way, because the main function sends the addresses of
numl and num2 — that is, by the time the get_values function receives the parameters,
they are already pointers — hence their names in get_values: num_ptrl and num_ptr2,
rather than numl and num?2.

In effect, we are “matching up” the data types of num1 and num2 with those of num_ptri1
and num_ptr2, respectively, when we prefix numl and num2 with ampersands while passing
them, and prefix num_ptr1 and num_ptr2 with asterisks in the parameter list of the function
get_values. We do not have to write num_ptrl = &numl; and num_ptr2 = &num2; — the
calling convention does that for us.

Important! This is a general rule in C: when you pass actual parameters as pointers
using ampersands (e.g. &numl, “the address of the variable num1”), you must use asterisks
to declare as pointers the corresponding formal parameters in the function to which you
pass them, (e.g. int *num_ptril, “the contents of the location pointed to by num_ptr1”).

9.4.2 Another variable parameter example

There is nothing mysterious about pointers, but they can be tricky. Here is another
example.

Notice that the pointers in both this example and the example above are dereferenced
with asterisks before they are used (for instance, when the contents of the location pointed to
by height_ptr are multiplied by the integer hscale with the line *height_ptr = *height_
ptr * hscale; in the function scale_dimensions below).

#include <stdio.h>

int main();
void scale_dimensions (int *, int *);

/* Scale some measurements */

54

Chapter 9: Pointers

int main()

{
int height,width;

height = 4;
width = 5;

scale_dimensions (&height, &width);

printf ("Scaled height = %d\n", height);
printf ("Scaled width = %d\n", width);

return O;

void scale_dimensions (int *height_ptr, int *width_ptr)
{
int hscale
int wscale

3; /* scale factors */
5;

*height_ptr = *height_ptr * hscale;
*width_ptr = *width_ptr * wscale;

9.5 Questions for Chapter 9

e

What is a pointer?

How is a variable declared to be a pointer?

What data types can pointers point to?

Write a statement which converts a pointer to an integer into a pointer to a double
type.

Why is it incorrect to write float *number = 2.65; 7

if 95

10 Decisions

Testing and Branching. Making conditions.

Until now, our code examples have been linear: control has flowed in one direction from
start to finish. In this chapter, we will examine ways to enable code to make decisions
and to choose among options. You will learn how to program code that will function in
situations similar to the following:

e If the user hits the jackpot, print a message to say so: ‘You’ve won!’
e If a bank balance is positive, then print ‘C’ for “credit”; otherwise, print ‘D’ for “debit”.

e If the user has typed in one of five choices, then do something that corresponds to the
choice, otherwise display an error message.

In the first case there is a simple “do or don’t” choice. In the second case, there are two
choices. The final case contains several possibilities.

C offers four main ways of coding decisions like the ones above. They are listed below.

if...
if (condition)

{

do something

¥

if...else...
if (condition)
{

do something

}

else

{

do something else

}

(condition) 7 do something : do something else;

switch (condition)

{
case first case : do first thing
case second case : do second thing
case third case : do third thing

}

10.1 if

The first form of the if statement is an all-or-nothing choice: if some condition is
satisfied, do something; otherwise, do nothing. For example:

56 Chapter 10: Decisions

if (condition) statement;

or
if (condition)
{
compound statement
}

In the second example, instead of a single statement, a whole block of statements is
executed. In fact, wherever you can place a single statement in C, you can place a compound
statement instead: a block of statements enclosed by curly brackets.

A condition is usually an expression that makes some sort of comparison. It must be
either true or false, and it must be enclosed in parentheses: ‘(...)’. If the condition is
true, then the statement or compound statement following the condition will be executed;
otherwise, it will be ignored. For example:

if (my_num == 0)

{
printf ("The number is zero.\n");
}
if (my_num > 0)
{
printf ("The number is positive.\n");
}
if (my_num < 0)
{
printf ("The number is negative.\n");
}

The same code could be written more compactly in the following way:
if (my_num == 0) printf ("The number is zero.\n");
if (my_num > 0) printf ("The number is positive.\n");
if (my_num < 0) printf ("The number is negative.\n");

It is often a good idea stylistically to use curly brackets in an if statement. It is no
less efficient from the compiler’s viewpoint, and sometimes you will want to include more
statements later. It also makes if statements stand out clearly in the code. However, curly
brackets make no sense for short statements such as the following:

if (my_num == 0) my_num++;

The if command by itself permits only limited decisions. With the addition of else in

the next section, however, if becomes much more flexible.

10.2 if... else...

Let’s review the basic form of the if... else... statement:
if (condition)

{

compound statement

Nested if statements 57

}

else

{

compound statement

¥

As with the bare if statement, there is a simplified version of the if... else... state-
ment without code blocks:

if (condition) statement else statement;

When the if... else... is executed, the condition in parentheses is evaluated. If it is
true, then the first statement or code block is executed; otherwise, the second statement or
code block is executed. This can save unnecessary tests and make a program more efficient:

if (my_num > 0)

{
printf ("The number is positive.");
3
else
{
printf ("The number is zero or negative.");
}

It is not necessary to test my_num in the second block because that block is not executed
unless my_num is not greater than zero.

10.3 Nested if statements

Consider the following two code examples. Their purposes are exactly the same.

int my_num = 3;

if ((my_num > 2) && (my_num < 4))
{
printf ("my_num is three");

}

or:

int my_num =3;

if (my_num > 2)

{
if (my_num < 4)
{
printf ("my_num is three");
}
}

Both of these code examples have the same result, but they arrive at it in different ways.
The first example, when translated into English, might read, “If my_num is greater than
two and my_num is less than four (and my_num is an integer), then my_num has to be three.”
The second method is more complicated. In English, it can be read, “If my_num is greater

58 Chapter 10: Decisions

than two, do what is in the first code block. Inside it, my_num is always greater than two;
otherwise the program would never have arrived there. Now, if my_num is also less than
four, then do what is inside the second code block. Inside that block, my_num is always less
than four. We also know it is more than two, since the whole of the second test happens
inside the block where that’s true. So, assuming my_num is an integer, it must be three.”

In short, there are two ways of making compound decisions in C. You make nested tests,
or you can use the comparison operators &&, | |, and so on. In situations where sequences of
comparison operators become too complex, nested tests are often a more attractive option.

Consider the following example:

if (1 > 2)
{
/* i is greater than 2 here! */
X
else
{
/* 1 is less than or equal to 2 here! */
b

The code blocks in this example provide “safe zones” wherein you can rest assured that
certain conditions hold. This enables you to think and code in a structured way.

You can nest if statements in multiple levels, as in the following example:
#include <stdio.h>

int main ()
{

int grade;

printf ("Type in your grade: ");
scanf ("%d", &grade);

if (grade < 10)
{
printf ("Man, you’re lame! Just go away.\n");
}
else
{
if (grade < 65)
{
printf ("You failed.\n");
}
else
{
printf ("You passed!\n");
if (grade >= 90)
{
printf ("And you got an A!'\n");
}

else

The switch statement 59

{
printf ("But you didn’t get an A. Sorry.\n");
}
}
}
return O;

¥

10.4 The ?...:... operator

The ?...:... operator is a sort of shorthand if...else... statement. Because it is a
little cryptic, it is not often used, but the basic form is as follows:
(condition) 7 expressionl : expression2;
The program evaluates condition. If it is true (not zero), then expressionl is returned;
otherwise, expression2 is returned.
For example, in the short program below, the line bas = (foo > bar) 7 foo : bar; as-
signs foo to bas if foo is greater than bar; otherwise, it assigns bar to bas.
#include <stdio.h>

int main()

{
int foo = 10;
int bar = 50;
int bas;

bas = (foo > bar) ? foo : bar;
printf("bas = %d\n\n", bas);

return O;
}

The program will print ‘bas = 50’ as a result.

10.5 The switch statement

The switch construction is another way of making decisions in C code. It is very flexible,
but only tests for integer and character values. It has the following general form:

switch (integer or character expression)

{

case constantl : statementl];
break; /* optional */

case constant? : statement2;
break; /* optional */

60 Chapter 10: Decisions

case constant3 : statement3;
break; /* optional */

}

The integer or character expression in the parentheses is evaluated, and the program checks
whether it matches one of the constants in the various cases listed. If there is a match, the
statement following that case will be executed, and execution will continue until either a
break statement or the closing curly bracket of the entire switch statement is encountered.

One of the cases is called default. Statements after the default case are executed
when none of the other cases are satisfied. You only need a default case if you are not sure
you are covering every case with the ones you list.

Here is an example program that uses the switch statement to translate decimal digits
into Morse code:

10.6 Example Listing

#include <stdio.h>

int main ();
void morse (int);

int main ()
{
int digit;

printf ("Enter any digit in the range O to 9: ");
scanf ("}d", &digit);

if ((digit < 0) || (digit > 9))
{

printf ("Your number was not in the range O to 9.\n");
}

else

{
printf ("The Morse code of that digit is ");
morse (digit);

3

return O;

void morse (int digit) /* print out Morse code */
{

switch (digit)

{

case 0 : printf ("----- ")

Example Listing

break;
case 1
break;
case 2
break;
case 3
break;
case 4
break;
case 5
break;
case 6
break;
case 7
break;
case 8
break;
case 9

}

: printf
: printf
: printf
: printf
: printf
: printf
: printf
: printf

: printf

printf ("\n\n");

}

(u..
(M"...
(M"....

(II

61

The morse function selects one of the printf statements with switch, based on the integer
expression digit. After every case in the switch, a break statement is used to jump switch
statement’s closing bracket ‘}’. Without break, execution would fall through to the next
case and execute its printf statement.

Here is an example of using fallthrough in a constructive way. The function yes accepts
input from the user and tests whether it was ’y’ or 'Y’. (The getchar function is from
the standard library and reads a character of input from the terminal. See Section 16.3.1

[getchar], page 144.)

#include <stdio.h>

int main ()

{

printf ("Will you join the Free Software movement? ");

if (yes())
{

printf ("Great!

}

else

{

printf ("Too bad.

}

return O;

int yesQ)

The price of freedom is eternal vigilance!\n\n");

Maybe next life...\n\n");

62 Chapter 10: Decisions

{
switch (getchar())
{
case 'y’
case ’Y’ : return 1;
default : return O;
}
}

If the character is ‘y’, then the program falls through and meets the statement return 1. If
there were a break statement after case ’y’, then the program would not be able to reach
case ’Y’ unless an actual ‘Y’ were typed.

Note: The return statements substitute for break in the above code, but they do more
than break out of switch — they break out of the whole function. This can be a useful
trick.

10.7 Questions for Chapter 10

1. Translate the following into good C: “If 1 does not equal 42, print out ‘Thank heavens
for mathematics!” ”

2. Write a program to get a lot of numbers from the user and print out the maximum and
minimum of those.

3. Write an automatic teller machine program that simulates telling you your bank balance
when you enter your account number and PIN number, but otherwise displays an error.

4. Write a mock program for a car computer that tells you how many kilometers to the
liter you’re getting when you enter how many liters of gas you’ve used and how far you
travelled.

while 63

11 Loops

Controlling repetitive processes. Nesting loops

Loops are a kind of C construct that enable the programmer to execute a sequence of
instructions over and over, with some condition specifying when they will stop. There are
three kinds of loop in C:

e while
e do ... while

e for

11.1 while

The simplest of the three is the while loop. It looks like this:

while (condition)
{

do something

}

The condition (for example, (a > b)) is evaluated every time the loop is executed. If
the condition is true, then statements in the curly brackets are executed. If the condition
is false, then those statements are ignored, and the while loop ends. The program then
executes the next statement in the program.

The condition comes at the start of the loop, so it is tested at the start of every pass,
or time through the loop. If the condition is false before the loop has been executed even
once, then the statements inside the curly brackets will never be executed. (See Section 11.2
(do...while|, page 64, for an example of a loop construction where this is not true.)

The following example prompts the user to type in a line of text, and then counts all the
spaces in the line. The loop terminates when the user hits the key and then prints
out the number of spaces. (See Section 16.3.1 [getchar|, page 144, for more information on
the standard library getchar function.)

#include <stdio.h>

int main()
{
char ch;
int count = O;

printf ("Type in a line of text.\n");

while ((ch = getchar()) != ’\n’)
{

if (ch == ?)

{

count++;

64 Chapter 11: Loops

+
+

printf ("Number of spaces = %d.\n\n", count);
return O;

¥

11.2 do...while

The do..while loop has the form:

do
{

do something
}

while (condition) ;

Notice that the condition is at the end of this loop. This means that a do..while loop
will always be executed at least once, before the test is made to determine whether it should
continue. This is the chief difference between while and do...while.

The following program accepts a line of input from the user. If the line contains a string
of characters delimited with double quotation marks, such as ‘"Hello!"’, the program prints
the string, with quotation marks. For example, if the user types in the following string:

I walked into a red sandstone building. "Oof!" [Careful, Nick!]
.. .then the program will print the following string:

"Oof!"
If the line contains only one double quotation mark, then the program will display an error,
and if it contains no double quotation marks, the program will print nothing.

Notice that the do. . .while loop in main waits to detect a linefeed character (\n), while
the one in get_substring looks for a double quotation mark (‘"”), but checks for a linefeed
in the loop body, or main code block of the loop, so that it can exit the loop if the user
entered a linefeed prematurely (before the second ‘"’).

This is one of the more complex examples we have examined so far, and you might find
it useful to trace the code, or follow through it step by step.

#include <stdio.h>
int main();

void get_substring();

int main()
{
char ch;

printf ("Enter a string with a quoted substring:\n\n");

do

for 65

{
ch = getchar();
lf (Ch p—)n))
{
putchar(ch);
get_substring();
}
}
while (ch != ’\n’);

return O;

}

void get_substring()
{

char ch;

do

{
ch = getchar();
putchar(ch);

if (ch == ’\n’)

{
printf ("\nString was not closed ");
printf ("before end of line.\n");
break;

}

}
while (ch !'= >"?);

printf ("\n\n");
}

11.3 for

The most complex loop in C is the for loop. The for construct, as it was developed
in earlier computer languages such as BASIC and Pascal, was intended to behave in the
following way:

For all values of variable from valuel to value2, in steps of value3, repeat the
following sequence of commands. . .

The for loop in C is much more versatile than its counterpart in those earlier languages.

The for loop looks like this in C:
for (initialization; condition; increment)

{

do something;

66 Chapter 11: Loops

}
In normal usage, these expressions have the following significance.
e initialization
This is an expression that initializes the control variable, or the variable tested in
the condition part of the for statement. (Sometimes this variable is called the loop’s

index.) The initialization part is only carried out once before the start of the loop.
Example: index = 1.

e condition

This is a conditional expression that is tested every time through the loop, just as in a
while loop. It is evaluated at the beginning of every loop, and the loop is only executed
if the expression is true. Example: index <= 20.

e increment

This is an expression that is used to alter the value of the control variable. In earlier
languages, this usually meant adding or subtracting 1 from the variable. In C, it can
be almost anything. Examples: index++, index *= 20, or index /= 2.3.

For example, the following for loop prints out the integers from 1 to 10:

int my_int;

for (my_int = 1; my_int <= 10; my_int++)
{

printf ("/%d ", my_int);

printf("\n");
}

The following example prints out all prime numbers between 1 and the macro value
MAX_INT. (A prime numbers is a number that cannot be divided by any number except 1
and itself without leaving a remainder.) This program checks whether a number is a prime
by dividing it by all smaller integers up to half its size. (See Chapter 12 [Preprocessor
directives|, page 73, for more information on macros.)

#include <stdio.h>

#define MAX_INT 500
#define TRUE 1
#define FALSE 0

int main ()
{

int poss_prime;

for (poss_prime = 2; poss_prime <= MAX_INT; poss_prime++)

{
if (prime(poss_prime))
{
printf ("%d ", poss_prime);
}

}

The flexibility of for 67

printf ("\n\n");
return O;

}

prime (int poss_prime) /* check whether poss_prime is prime */

{

int poss_factor;

for (poss_factor = 2; poss_factor <= poss_prime/2; poss_factor++)

{
if (poss_prime % poss_factor == 0)
{
return (FALSE);
}
}

return (TRUE);
}
The program should print the following sequence of integers:

2357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191
193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283
293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401
409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499

11.4 The flexibility of for

As mentioned above, C’s for construct is quite versatile. You can use almost any
statement you like for its initialization, condition, and increment parts, including an empty
statement. For example, omitting the initialization and increment parts creates what is
essentially a while loop:

int my_int = 1;

for (; my_int <= 20;)

{
printf ("%d ", my_int);
my_int++;
}
Omitting the condition part as well produces an infinite loop, or loop that never ends:
for (; ;5)
{
printf ("Aleph Null bottles of beer on the wall...\n");
}

You can break out of an “infinite loop” with the break or return commands. (See Sec-
tion 11.5 [Terminating and speeding loops|, page 69.)

68 Chapter 11: Loops

Consider the following loop:

for (my_int = 2; my_int <= 1000; my_int = my_int * my_int)
{

printf ("%d ", my_int);
}

This loop begins with 2, and each time through the loop, my_int is squared.
Here’s another odd for loop:

char ch;

for (ch = ’%’; ch != ’\n’; ch = getchar())
{
/* do something */

¥

This loop starts off by initializing ch with an asterisk. It checks that ch is not a linefeed
character (which it isn’t, the first time through), then reads a new value of ch with the
library function getchar and executes the code inside the curly brackets. When it detects
a line feed, the loop ends.
It is also possible to combine several increment parts in a for loop using the comma
operator ,. (See Section 18.2 [The comma operator|, page 189, for more information.)
#include <stdio.h>

int main()

{
int up, down;
for (up = 0, down=10; up < down; up++, down--)
{
printf ("up = %d, down= %d\n",up,down);
}
return O;
}

The example above will produce the following output:

up = 0, down= 10

up = 1, down= 9

up = 2, down= 8

up = 3, down= 7

up = 4, down= 6

One feature of the for loop that unnerves some programmers is that even the value of

the loop’s conditional expression can be altered from within the loop itself:

int index, number = 20;

for (index = 0; index <= number; index++)

{
if (index == 9)
{

Terminating loops with return 69

number = 30;
}
}

In many languages, this technique is syntactically forbidden. Not so in the flexible language
C. It is rarely a good idea, however, because it can make your code confusing and hard to
maintain.

11.5 Terminating and speeding loops

C provides simple ways of terminating or speeding up any of the three loops we have
discussed, whether or not it has run its course. The three main commands to do so are
break, return, and continue.

11.5.1 Terminating loops with break

The usual statement to terminate a loop is the same statement that is used to jump out
of switch statements:

break;

If this statement is encountered within a loop, the loop will end immediately. For instance,
here is an inefficient way of assigning 12 to my_int:

for (my_int = 1; my_int <= 100; my_int++)

{
if (my_int == 12)
{
break;
}
}

printf ("my_int = %d\n\n", my_int);

11.5.2 Terminating loops with return

Suppose that a program is in the middle of a loop (or some nested loops) in a complex
function, and suddenly the function finds its answer. This is where the return statement
comes in handy. The return command will jump out of any number of loops and pass
the value back to the calling function without having to finish the loops or the rest of the
function. (See Section 11.6 [Nested loops|, page 71, for clarification of the idea of placing
one loop inside another.)

Example:
#include <stdio.h>

int main()

{

70 Chapter 11: Loops

printf ("%d\n\n", returner(5, 10));
printf ("%d\n\n", returner(5, 5000));
return O;

}

int returner (int foo, int bar)

{
while (foo <= 1000)
{
if (foo > bar)
{
return (foo);
}
foo++;
}
return foo;
}

The function returner contains a while loop that increments the variable foo and tests it
against a value of 1000. However, if at any point the value of foo exceeds the value of the
variable bar, the function will exit the loop, immediately returning the value of foo to the
calling function. Otherwise, when foo reaches 1000, the function will increment foo one
more time and return it to main.

Because of the values it passes to returner, the main function will first print a value of
11, then 1001. Can you see