
GNU Coreutils
Core GNU utilities

for version 8.32, 24 February 2020

David MacKenzie et al.

This manual documents version 8.32 of the GNU core utilities, including the standard
programs for text and file manipulation.

Copyright c© 1994-2020 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

i

Short Contents

1 Introduction . 1
2 Common options . 2

3 Output of entire files . 12
4 Formatting file contents . 22

5 Output of parts of files . 29
6 Summarizing files . 41

7 Operating on sorted files . 46

8 Operating on fields . 69
9 Operating on characters . 79

10 Directory listing . 85
11 Basic operations . 100

12 Special file types . 123
13 Changing file attributes . 132
14 Disk usage . 140

15 Printing text . 154

16 Conditions . 158
17 Redirection . 165
18 File name manipulation . 168

19 Working context . 175

20 User information . 183
21 System context . 187

22 SELinux context . 199

23 Modified command invocation . 202

24 Process control . 217
25 Delaying . 218
26 Numeric operations . 219
27 File permissions . 227
28 File timestamps . 235
29 Date input formats . 236
30 Version sort ordering . 243

31 Opening the Software Toolbox . 255
A GNU Free Documentation License . 263
Index . 271

ii

Table of Contents

1 Introduction . 1

2 Common options . 2
2.1 Exit status . 2
2.2 Backup options . 3
2.3 Block size . 3
2.4 Floating point numbers . 5
2.5 Signal specifications . 6
2.6 chown, chgrp, chroot, id: Disambiguating user names and IDs . . . 7
2.7 Sources of random data . 8
2.8 Target directory . 8
2.9 Trailing slashes . 9
2.10 Traversing symlinks . 10
2.11 Treating / specially . 10
2.12 Special built-in utilities . 10
2.13 Standards conformance . 11
2.14 coreutils: Multi-call program . 11

3 Output of entire files . 12
3.1 cat: Concatenate and write files . 12
3.2 tac: Concatenate and write files in reverse . 13
3.3 nl: Number lines and write files . 13
3.4 od: Write files in octal or other formats . 15
3.5 base32: Transform data into printable data . 18
3.6 base64: Transform data into printable data . 19
3.7 basenc: Transform data into printable data . 19

4 Formatting file contents . 22
4.1 fmt: Reformat paragraph text . 22
4.2 pr: Paginate or columnate files for printing . 23
4.3 fold: Wrap input lines to fit in specified width 27

5 Output of parts of files . 29
5.1 head: Output the first part of files . 29
5.2 tail: Output the last part of files . 30
5.3 split: Split a file into pieces. 34
5.4 csplit: Split a file into context-determined pieces 37

6 Summarizing files . 41
6.1 wc: Print newline, word, and byte counts . 41
6.2 sum: Print checksum and block counts . 42

iii

6.3 cksum: Print CRC checksum and byte counts 42
6.4 b2sum: Print or check BLAKE2 digests . 43
6.5 md5sum: Print or check MD5 digests . 43
6.6 sha1sum: Print or check SHA-1 digests . 45
6.7 sha2 utilities: Print or check SHA-2 digests . 45

7 Operating on sorted files . 46
7.1 sort: Sort text files . 46
7.2 shuf: Shuffling text . 54
7.3 uniq: Uniquify files . 56
7.4 comm: Compare two sorted files line by line . 58
7.5 ptx: Produce permuted indexes . 60

7.5.1 General options . 60
7.5.2 Charset selection . 61
7.5.3 Word selection and input processing . 61
7.5.4 Output formatting . 63
7.5.5 The GNU extensions to ptx . 65

7.6 tsort: Topological sort . 66
7.6.1 tsort: Background . 68

8 Operating on fields . 69
8.1 cut: Print selected parts of lines . 69
8.2 paste: Merge lines of files . 70
8.3 join: Join lines on a common field . 72

8.3.1 General options . 72
8.3.2 Pre-sorting . 74
8.3.3 Working with fields . 75
8.3.4 Controlling join’s field matching . 75
8.3.5 Header lines . 77
8.3.6 Union, Intersection and Difference of files 77

9 Operating on characters . 79
9.1 tr: Translate, squeeze, and/or delete characters 79

9.1.1 Specifying sets of characters . 79
9.1.2 Translating . 81
9.1.3 Squeezing repeats and deleting . 82

9.2 expand: Convert tabs to spaces . 83
9.3 unexpand: Convert spaces to tabs . 84

10 Directory listing . 85
10.1 ls: List directory contents . 85

10.1.1 Which files are listed . 85
10.1.2 What information is listed . 87
10.1.3 Sorting the output . 91
10.1.4 General output formatting . 92
10.1.5 Formatting file timestamps . 95

iv

10.1.6 Formatting the file names . 96
10.2 dir: Briefly list directory contents . 98
10.3 vdir: Verbosely list directory contents . 98
10.4 dircolors: Color setup for ls . 98

11 Basic operations . 100
11.1 cp: Copy files and directories . 100
11.2 dd: Convert and copy a file . 106
11.3 install: Copy files and set attributes . 112
11.4 mv: Move (rename) files . 115
11.5 rm: Remove files or directories . 117
11.6 shred: Remove files more securely . 119

12 Special file types . 123
12.1 link: Make a hard link via the link syscall 123
12.2 ln: Make links between files . 123
12.3 mkdir: Make directories . 127
12.4 mkfifo: Make FIFOs (named pipes) . 128
12.5 mknod: Make block or character special files 128
12.6 readlink: Print value of a symlink or canonical file name 129
12.7 rmdir: Remove empty directories . 131
12.8 unlink: Remove files via the unlink syscall 131

13 Changing file attributes . 132
13.1 chown: Change file owner and group . 132
13.2 chgrp: Change group ownership . 134
13.3 chmod: Change access permissions . 136
13.4 touch: Change file timestamps . 137

14 Disk usage . 140
14.1 df: Report file system disk space usage . 140
14.2 du: Estimate file space usage . 143
14.3 stat: Report file or file system status . 148
14.4 sync: Synchronize cached writes to persistent storage 152
14.5 truncate: Shrink or extend the size of a file 152

15 Printing text . 154
15.1 echo: Print a line of text . 154
15.2 printf: Format and print data . 155
15.3 yes: Print a string until interrupted . 157

v

16 Conditions . 158
16.1 false: Do nothing, unsuccessfully . 158
16.2 true: Do nothing, successfully . 158
16.3 test: Check file types and compare values 158

16.3.1 File type tests . 159
16.3.2 Access permission tests . 160
16.3.3 File characteristic tests . 160
16.3.4 String tests . 160
16.3.5 Numeric tests . 161
16.3.6 Connectives for test . 161

16.4 expr: Evaluate expressions . 162
16.4.1 String expressions . 162
16.4.2 Numeric expressions . 163
16.4.3 Relations for expr . 163
16.4.4 Examples of using expr . 164

17 Redirection . 165
17.1 tee: Redirect output to multiple files or processes 165

18 File name manipulation . 168
18.1 basename: Strip directory and suffix from a file name 168
18.2 dirname: Strip last file name component . 169
18.3 pathchk: Check file name validity and portability 169
18.4 mktemp: Create temporary file or directory 170
18.5 realpath: Print the resolved file name. 172

18.5.1 Realpath usage examples . 173

19 Working context . 175
19.1 pwd: Print working directory . 175
19.2 stty: Print or change terminal characteristics 175

19.2.1 Control settings . 176
19.2.2 Input settings . 177
19.2.3 Output settings . 177
19.2.4 Local settings . 178
19.2.5 Combination settings . 179
19.2.6 Special characters . 180
19.2.7 Special settings . 181

19.3 printenv: Print all or some environment variables 181
19.4 tty: Print file name of terminal on standard input 182

20 User information . 183
20.1 id: Print user identity . 183
20.2 logname: Print current login name . 184
20.3 whoami: Print effective user ID . 184
20.4 groups: Print group names a user is in . 184
20.5 users: Print login names of users currently logged in 184
20.6 who: Print who is currently logged in . 185

vi

21 System context . 187
21.1 date: Print or set system date and time . 187

21.1.1 Time conversion specifiers . 187
21.1.2 Date conversion specifiers . 188
21.1.3 Literal conversion specifiers . 189
21.1.4 Padding and other flags . 189
21.1.5 Setting the time . 190
21.1.6 Options for date . 191
21.1.7 Examples of date . 193

21.2 arch: Print machine hardware name . 195
21.3 nproc: Print the number of available processors 195
21.4 uname: Print system information . 195
21.5 hostname: Print or set system name . 197
21.6 hostid: Print numeric host identifier . 197
21.7 uptime: Print system uptime and load . 197

22 SELinux context . 199
22.1 chcon: Change SELinux context of file . 199
22.2 runcon: Run a command in specified SELinux context 200

23 Modified command invocation 202
23.1 chroot: Run a command with a different root directory 202
23.2 env: Run a command in a modified environment 203

23.2.1 General options . 204
23.2.2 -S/--split-string usage in scripts . 206

Testing and troubleshooting . 207
23.2.3 -S/--split-string syntax . 208

Splitting arguments by whitespace . 208
Escape sequences . 209
Comments . 210
Environment variable expansion . 210

23.3 nice: Run a command with modified niceness 211
23.4 nohup: Run a command immune to hangups 213
23.5 stdbuf: Run a command with modified I/O stream buffering . . 214
23.6 timeout: Run a command with a time limit 215

24 Process control . 217
24.1 kill: Send a signal to processes . 217

25 Delaying . 218
25.1 sleep: Delay for a specified time . 218

vii

26 Numeric operations . 219
26.1 factor: Print prime factors . 219
26.2 numfmt: Reformat numbers . 219

26.2.1 General options . 220
26.2.2 Possible units: . 221
26.2.3 Examples of using numfmt . 223

26.3 seq: Print numeric sequences . 225

27 File permissions . 227
27.1 Structure of File Mode Bits . 227
27.2 Symbolic Modes . 228

27.2.1 Setting Permissions . 228
27.2.2 Copying Existing Permissions . 229
27.2.3 Changing Special Mode Bits . 230
27.2.4 Conditional Executability . 230
27.2.5 Making Multiple Changes . 230
27.2.6 The Umask and Protection . 231

27.3 Numeric Modes . 232
27.4 Operator Numeric Modes . 233
27.5 Directories and the Set-User-ID and Set-Group-ID Bits 233

28 File timestamps . 235

29 Date input formats . 236
29.1 General date syntax . 236
29.2 Calendar date items . 237
29.3 Time of day items . 238
29.4 Time zone items . 239
29.5 Combined date and time of day items . 239
29.6 Day of week items . 239
29.7 Relative items in date strings . 240
29.8 Pure numbers in date strings . 241
29.9 Seconds since the Epoch . 241
29.10 Specifying time zone rules . 241
29.11 Authors of parse_datetime . 242

30 Version sort ordering . 243
30.1 Version sort overview . 243

30.1.1 Using version sort in GNU coreutils . 243
30.1.2 Origin of version sort and differences from natural sort . . 244
30.1.3 Correct/Incorrect ordering and
Expected/Unexpected results . 244

30.2 Implementation Details . 244
30.2.1 Version-sort ordering rules . 245
30.2.2 Version sort is not the same as numeric sort 246
30.2.3 Punctuation Characters . 247

viii

30.2.4 Punctuation Characters vs letters . 247
30.2.5 Tilde ‘~’ character . 248
30.2.6 Version sort uses ASCII order,
ignores locale, unicode characters . 248

30.3 Differences from the official Debian Algorithm 249
30.3.1 Minus/Hyphen ‘-’ and Colon ‘:’ characters 249
30.3.2 Additional hard-coded priorities in
GNU coreutils’ version sort . 250

30.3.3 Special handling of file extensions . 250
30.4 Advanced Topics . 252

30.4.1 Comparing two strings using Debian’s algorithm 252
30.4.2 Reporting bugs or incorrect results . 253
30.4.3 Other version/natural sort implementations 253
30.4.4 Related Source code . 254

31 Opening the Software Toolbox 255
Toolbox Introduction . 255
I/O Redirection . 255
The who Command . 256
The cut Command . 257
The sort Command . 257
The uniq Command . 257
Putting the Tools Together . 257

Appendix A GNU Free Documentation License . . 263

Index . 271

1

1 Introduction

This manual is a work in progress: many sections make no attempt to explain basic concepts
in a way suitable for novices. Thus, if you are interested, please get involved in improving
this manual. The entire GNU community will benefit.

The GNU utilities documented here are mostly compatible with the POSIX standard.

Please report bugs to bug-coreutils@gnu.org. Include the version number, machine
architecture, input files, and any other information needed to reproduce the bug: your
input, what you expected, what you got, and why it is wrong.

If you have a problem with sort or date, try using the --debug option, as it can can
often help find and fix problems without having to wait for an answer to a bug report. If
the debug output does not suffice to fix the problem on your own, please compress and
attach it to the rest of your bug report.

Although diffs are welcome, please include a description of the problem as well, since
this is sometimes difficult to infer. See Section “Bugs” in Using and Porting GNU CC .

This manual was originally derived from the Unix man pages in the distributions, which
were written by David MacKenzie and updated by Jim Meyering. What you are reading
now is the authoritative documentation for these utilities; the man pages are no longer
being maintained. The original fmt man page was written by Ross Paterson. François
Pinard did the initial conversion to Texinfo format. Karl Berry did the indexing, some
reorganization, and editing of the results. Brian Youmans of the Free Software Foundation
office staff combined the manuals for textutils, fileutils, and sh-utils to produce the present
omnibus manual. Richard Stallman contributed his usual invaluable insights to the overall
process.

mailto:bug-coreutils@gnu.org

2

2 Common options

Certain options are available in all of these programs. Rather than writing identical de-
scriptions for each of the programs, they are described here. (In fact, every GNU program
accepts (or should accept) these options.)

Normally options and operands can appear in any order, and programs act as if all the
options appear before any operands. For example, ‘sort -r passwd -t :’ acts like ‘sort
-r -t : passwd’, since ‘:’ is an option-argument of -t. However, if the POSIXLY_CORRECT

environment variable is set, options must appear before operands, unless otherwise specified
for a particular command.

A few programs can usefully have trailing operands with leading ‘-’. With such a
program, options must precede operands even if POSIXLY_CORRECT is not set, and this
fact is noted in the program description. For example, the env command’s options must
appear before its operands, since in some cases the operands specify a command that itself
contains options.

Most programs that accept long options recognize unambiguous abbreviations of those
options. For example, ‘rmdir --ignore-fail-on-non-empty’ can be invoked as ‘rmdir
--ignore-fail’ or even ‘rmdir --i’. Ambiguous options, such as ‘ls --h’, are identified
as such.

Some of these programs recognize the --help and --version options only when one of
them is the sole command line argument. For these programs, abbreviations of the long
options are not always recognized.

‘--help’ Print a usage message listing all available options, then exit successfully.

‘--version’
Print the version number, then exit successfully.

‘--’ Delimit the option list. Later arguments, if any, are treated as operands even
if they begin with ‘-’. For example, ‘sort -- -r’ reads from the file named -r.

A single ‘-’ operand is not really an option, though it looks like one. It stands for a file
operand, and some tools treat it as standard input, or as standard output if that is clear
from the context. For example, ‘sort -’ reads from standard input, and is equivalent to
plain ‘sort’. Unless otherwise specified, a ‘-’ can appear as any operand that requires a
file name.

2.1 Exit status

Nearly every command invocation yields an integral exit status that can be used to change
how other commands work. For the vast majority of commands, an exit status of zero
indicates success. Failure is indicated by a nonzero value—typically ‘1’, though it may
differ on unusual platforms as POSIX requires only that it be nonzero.

However, some of the programs documented here do produce other exit status values and
a few associate different meanings with the values ‘0’ and ‘1’. Here are some of the excep-
tions: chroot, env, expr, nice, nohup, numfmt, printenv, sort, stdbuf, test, timeout,
tty.

Chapter 2: Common options 3

2.2 Backup options

Some GNU programs (at least cp, install, ln, and mv) optionally make backups of files
before writing new versions. These options control the details of these backups. The options
are also briefly mentioned in the descriptions of the particular programs.

‘-b’
‘--backup[=method]’

Make a backup of each file that would otherwise be overwritten or removed.
Without this option, the original versions are destroyed. Use method to deter-
mine the type of backups to make. When this option is used but method is not
specified, then the value of the VERSION_CONTROL environment variable is used.
And if VERSION_CONTROL is not set, the default backup type is ‘existing’.

Note that the short form of this option, -b does not accept any argument. Using
-b is equivalent to using --backup=existing.

This option corresponds to the Emacs variable ‘version-control’; the values
for method are the same as those used in Emacs. This option also accepts more
descriptive names. The valid methods are (unique abbreviations are accepted):

‘none’
‘off’ Never make backups.

‘numbered’
‘t’ Always make numbered backups.

‘existing’
‘nil’ Make numbered backups of files that already have them, simple

backups of the others.

‘simple’
‘never’ Always make simple backups. Please note ‘never’ is not to be

confused with ‘none’.

‘-S suffix’
‘--suffix=suffix’

Append suffix to each backup file made with -b. If this option is not specified,
the value of the SIMPLE_BACKUP_SUFFIX environment variable is used. And if
SIMPLE_BACKUP_SUFFIX is not set, the default is ‘~’, just as in Emacs.

2.3 Block size

Some GNU programs (at least df, du, and ls) display sizes in “blocks”. You can adjust
the block size and method of display to make sizes easier to read. The block size used for
display is independent of any file system block size. Fractional block counts are rounded up
to the nearest integer.

The default block size is chosen by examining the following environment variables in
turn; the first one that is set determines the block size.

DF_BLOCK_SIZE

This specifies the default block size for the df command. Similarly,
DU_BLOCK_SIZE specifies the default for du and LS_BLOCK_SIZE for ls.

Chapter 2: Common options 4

BLOCK_SIZE

This specifies the default block size for all three commands, if the above
command-specific environment variables are not set.

BLOCKSIZE

This specifies the default block size for all values that are normally printed
as blocks, if neither BLOCK_SIZE nor the above command-specific environment
variables are set. Unlike the other environment variables, BLOCKSIZE does not
affect values that are normally printed as byte counts, e.g., the file sizes con-
tained in ls -l output.

POSIXLY_CORRECT

If neither command_BLOCK_SIZE, nor BLOCK_SIZE, nor BLOCKSIZE is set, but
this variable is set, the block size defaults to 512.

If none of the above environment variables are set, the block size currently defaults to
1024 bytes in most contexts, but this number may change in the future. For ls file sizes,
the block size defaults to 1 byte.

A block size specification can be a positive integer specifying the number of bytes per
block, or it can be human-readable or si to select a human-readable format. Integers may
be followed by suffixes that are upward compatible with the SI prefixes (http://www.bipm.
org/en/publications/si-brochure/chapter3.html) for decimal multiples and with the
ISO/IEC 80000-13 (formerly IEC 60027-2) prefixes (https://physics.nist.gov/cuu/
Units/binary.html) for binary multiples.

With human-readable formats, output sizes are followed by a size letter such as ‘M’ for
megabytes. BLOCK_SIZE=human-readable uses powers of 1024; ‘M’ stands for 1,048,576
bytes. BLOCK_SIZE=si is similar, but uses powers of 1000 and appends ‘B’; ‘MB’ stands for
1,000,000 bytes.

A block size specification preceded by ‘’’ causes output sizes to be displayed with thou-
sands separators. The LC_NUMERIC locale specifies the thousands separator and grouping.
For example, in an American English locale, ‘--block-size="’1kB"’ would cause a size of
1234000 bytes to be displayed as ‘1,234’. In the default C locale, there is no thousands
separator so a leading ‘’’ has no effect.

An integer block size can be followed by a suffix to specify a multiple of that size. A bare
size letter, or one followed by ‘iB’, specifies a multiple using powers of 1024. A size letter
followed by ‘B’ specifies powers of 1000 instead. For example, ‘1M’ and ‘1MiB’ are equivalent
to ‘1048576’, whereas ‘1MB’ is equivalent to ‘1000000’.

A plain suffix without a preceding integer acts as if ‘1’ were prepended, except that it
causes a size indication to be appended to the output. For example, ‘--block-size="kB"’
displays 3000 as ‘3kB’.

The following suffixes are defined. Large sizes like 1Y may be rejected by your computer
due to limitations of its arithmetic.

‘kB’ kilobyte: 103 = 1000.

‘k’
‘K’
‘KiB’ kibibyte: 210 = 1024. ‘K’ is special: the SI prefix is ‘k’ and the ISO/IEC

80000-13 prefix is ‘Ki’, but tradition and POSIX use ‘k’ to mean ‘KiB’.

http://www.bipm.org/en/publications/si-brochure/chapter3.html
http://www.bipm.org/en/publications/si-brochure/chapter3.html
https://physics.nist.gov/cuu/Units/binary.html
https://physics.nist.gov/cuu/Units/binary.html

Chapter 2: Common options 5

‘MB’ megabyte: 106 = 1, 000, 000.

‘M’
‘MiB’ mebibyte: 220 = 1, 048, 576.

‘GB’ gigabyte: 109 = 1, 000, 000, 000.

‘G’
‘GiB’ gibibyte: 230 = 1, 073, 741, 824.

‘TB’ terabyte: 1012 = 1, 000, 000, 000, 000.

‘T’
‘TiB’ tebibyte: 240 = 1, 099, 511, 627, 776.

‘PB’ petabyte: 1015 = 1, 000, 000, 000, 000, 000.

‘P’
‘PiB’ pebibyte: 250 = 1, 125, 899, 906, 842, 624.

‘EB’ exabyte: 1018 = 1, 000, 000, 000, 000, 000, 000.

‘E’
‘EiB’ exbibyte: 260 = 1, 152, 921, 504, 606, 846, 976.

‘ZB’ zettabyte: 1021 = 1, 000, 000, 000, 000, 000, 000, 000

‘Z’
‘ZiB’ 270 = 1, 180, 591, 620, 717, 411, 303, 424.

‘YB’ yottabyte: 1024 = 1, 000, 000, 000, 000, 000, 000, 000, 000.

‘Y’
‘YiB’ 280 = 1, 208, 925, 819, 614, 629, 174, 706, 176.

Block size defaults can be overridden by an explicit --block-size=size option. The -k
option is equivalent to --block-size=1K, which is the default unless the POSIXLY_CORRECT
environment variable is set. The -h or --human-readable option is equivalent to
--block-size=human-readable. The --si option is equivalent to --block-size=si.
Note for ls the -k option does not control the display of the apparent file sizes, whereas
the --block-size option does.

2.4 Floating point numbers

Commands that accept or produce floating point numbers employ the floating point rep-
resentation of the underlying system, and suffer from rounding error, overflow, and similar
floating-point issues. Almost all modern systems use IEEE-754 floating point, and it is
typically portable to assume IEEE-754 behavior these days. IEEE-754 has positive and
negative infinity, distinguishes positive from negative zero, and uses special values called
NaNs to represent invalid computations such as dividing zero by itself. For more infor-
mation, please see David Goldberg’s paper What Every Computer Scientist Should Know
About Floating-Point Arithmetic (https://docs.oracle.com/cd/E19957-01/806-3568/
ncg_goldberg.html).

Commands that accept floating point numbers as options, operands or input use the
standard C functions strtod and strtold to convert from text to floating point numbers.

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Chapter 2: Common options 6

These floating point numbers therefore can use scientific notation like 1.0e-34 and -10e100.
Commands that parse floating point also understand case-insensitive inf, infinity, and
NaN, although whether such values are useful depends on the command in question. Modern
C implementations also accept hexadecimal floating point numbers such as -0x.ep-3, which
stands for −14/16 times 2−3, which equals −0.109375. See Section “Parsing of Floats” in
The GNU C Library Reference Manual.

Normally the LC_NUMERIC locale determines the decimal-point character. However, some
commands’ descriptions specify that they accept numbers in either the current or the C
locale; for example, they treat ‘3.14’ like ‘3,14’ if the current locale uses comma as a
decimal point.

2.5 Signal specifications

A signal may be a signal name like ‘HUP’, or a signal number like ‘1’, or an exit status of a
process terminated by the signal. A signal name can be given in canonical form or prefixed
by ‘SIG’. The case of the letters is ignored. The following signal names and numbers are
supported on all POSIX compliant systems:

‘HUP’ 1. Hangup.

‘INT’ 2. Terminal interrupt.

‘QUIT’ 3. Terminal quit.

‘ABRT’ 6. Process abort.

‘KILL’ 9. Kill (cannot be caught or ignored).

‘ALRM’ 14. Alarm Clock.

‘TERM’ 15. Termination.

Other supported signal names have system-dependent corresponding numbers. All systems
conforming to POSIX 1003.1-2001 also support the following signals:

‘BUS’ Access to an undefined portion of a memory object.

‘CHLD’ Child process terminated, stopped, or continued.

‘CONT’ Continue executing, if stopped.

‘FPE’ Erroneous arithmetic operation.

‘ILL’ Illegal Instruction.

‘PIPE’ Write on a pipe with no one to read it.

‘SEGV’ Invalid memory reference.

‘STOP’ Stop executing (cannot be caught or ignored).

‘TSTP’ Terminal stop.

‘TTIN’ Background process attempting read.

‘TTOU’ Background process attempting write.

‘URG’ High bandwidth data is available at a socket.

Chapter 2: Common options 7

‘USR1’ User-defined signal 1.

‘USR2’ User-defined signal 2.

POSIX 1003.1-2001 systems that support the XSI extension also support the following
signals:

‘POLL’ Pollable event.

‘PROF’ Profiling timer expired.

‘SYS’ Bad system call.

‘TRAP’ Trace/breakpoint trap.

‘VTALRM’ Virtual timer expired.

‘XCPU’ CPU time limit exceeded.

‘XFSZ’ File size limit exceeded.

POSIX 1003.1-2001 systems that support the XRT extension also support at least eight
real-time signals called ‘RTMIN’, ‘RTMIN+1’, . . . , ‘RTMAX-1’, ‘RTMAX’.

2.6 chown, chgrp, chroot, id: Disambiguating user names
and IDs

Since the user and group arguments to these commands may be specified as names or
numeric IDs, there is an apparent ambiguity. What if a user or group name is a string of
digits?1 Should the command interpret it as a user name or as an ID? POSIX requires
that these commands first attempt to resolve the specified string as a name, and only once
that fails, then try to interpret it as an ID. This is troublesome when you want to specify
a numeric ID, say 42, and it must work even in a pathological situation where ‘42’ is a user
name that maps to some other user ID, say 1000. Simply invoking chown 42 F, will set Fs
owner ID to 1000—not what you intended.

GNU chown, chgrp, chroot, and id provide a way to work around this, that at the
same time may result in a significant performance improvement by eliminating a database
look-up. Simply precede each numeric user ID and/or group ID with a ‘+’, in order to force
its interpretation as an integer:

chown +42 F

chgrp +$numeric_group_id another-file

chown +0:+0 /

The name look-up process is skipped for each ‘+’-prefixed string, because a string con-
taining ‘+’ is never a valid user or group name. This syntax is accepted on most common
Unix systems, but not on Solaris 10.

1 Using a number as a user name is common in some environments.

Chapter 2: Common options 8

2.7 Sources of random data

The shuf, shred, and sort commands sometimes need random data to do their work. For
example, ‘sort -R’ must choose a hash function at random, and it needs random data to
make this selection.

By default these commands use an internal pseudo-random generator initialized by
a small amount of entropy, but can be directed to use an external source with the
--random-source=file option. An error is reported if file does not contain enough bytes.

For example, the device file /dev/urandom could be used as the source of random data.
Typically, this device gathers environmental noise from device drivers and other sources
into an entropy pool, and uses the pool to generate random bits. If the pool is short of
data, the device reuses the internal pool to produce more bits, using a cryptographically
secure pseudo-random number generator. But be aware that this device is not designed for
bulk random data generation and is relatively slow.

/dev/urandom suffices for most practical uses, but applications requiring high-value or
long-term protection of private data may require an alternate data source like /dev/random
or /dev/arandom. The set of available sources depends on your operating system.

To reproduce the results of an earlier invocation of a command, you can save some
random data into a file and then use that file as the random source in earlier and later invo-
cations of the command. Rather than depending on a file, one can generate a reproducible
arbitrary amount of pseudo-random data given a seed value, using for example:

get_seeded_random()

{

seed="$1"

openssl enc -aes-256-ctr -pass pass:"$seed" -nosalt \

</dev/zero 2>/dev/null

}

shuf -i1-100 --random-source=<(get_seeded_random 42)

2.8 Target directory

The cp, install, ln, and mv commands normally treat the last operand specially when it
is a directory or a symbolic link to a directory. For example, ‘cp source dest’ is equivalent
to ‘cp source dest/source’ if dest is a directory. Sometimes this behavior is not exactly
what is wanted, so these commands support the following options to allow more fine-grained
control:

‘-T’
‘--no-target-directory’

Do not treat the last operand specially when it is a directory or a symbolic link
to a directory. This can help avoid race conditions in programs that operate in
a shared area. For example, when the command ‘mv /tmp/source /tmp/dest’
succeeds, there is no guarantee that /tmp/source was renamed to /tmp/dest:
it could have been renamed to /tmp/dest/source instead, if some other process
created /tmp/dest as a directory. However, if mv -T /tmp/source /tmp/dest

succeeds, there is no question that /tmp/source was renamed to /tmp/dest.

Chapter 2: Common options 9

In the opposite situation, where you want the last operand to be treated as a di-
rectory and want a diagnostic otherwise, you can use the --target-directory
(-t) option.

‘-t directory’
‘--target-directory=directory’

Use directory as the directory component of each destination file name.

The interface for most programs is that after processing options and a finite
(possibly zero) number of fixed-position arguments, the remaining argument
list is either expected to be empty, or is a list of items (usually files) that will
all be handled identically. The xargs program is designed to work well with
this convention.

The commands in the mv-family are unusual in that they take a variable number
of arguments with a special case at the end (namely, the target directory). This
makes it nontrivial to perform some operations, e.g., “move all files from here
to ../d/”, because mv * ../d/ might exhaust the argument space, and ls |

xargs ... doesn’t have a clean way to specify an extra final argument for each
invocation of the subject command. (It can be done by going through a shell
command, but that requires more human labor and brain power than it should.)

The --target-directory (-t) option allows the cp, install, ln, and mv pro-
grams to be used conveniently with xargs. For example, you can move the files
from the current directory to a sibling directory, d like this:

ls | xargs mv -t ../d --

However, this doesn’t move files whose names begin with ‘.’. If you use the
GNU find program, you can move those files too, with this command:

find . -mindepth 1 -maxdepth 1 \

| xargs mv -t ../d

But both of the above approaches fail if there are no files in the current directory,
or if any file has a name containing a blank or some other special characters.
The following example removes those limitations and requires both GNU find

and GNU xargs:

find . -mindepth 1 -maxdepth 1 -print0 \

| xargs --null --no-run-if-empty \

mv -t ../d

The --target-directory (-t) and --no-target-directory (-T) options cannot be com-
bined.

2.9 Trailing slashes

Some GNU programs (at least cp and mv) allow you to remove any trailing slashes from each
source argument before operating on it. The --strip-trailing-slashes option enables
this behavior.

This is useful when a source argument may have a trailing slash and specify a symbolic
link to a directory. This scenario is in fact rather common because some shells can automat-
ically append a trailing slash when performing file name completion on such symbolic links.

Chapter 2: Common options 10

Without this option, mv, for example, (via the system’s rename function) must interpret a
trailing slash as a request to dereference the symbolic link and so must rename the indirectly
referenced directory and not the symbolic link. Although it may seem surprising that such
behavior be the default, it is required by POSIX and is consistent with other parts of that
standard.

2.10 Traversing symlinks

The following options modify how chown and chgrp traverse a hierarchy when the
--recursive (-R) option is also specified. If more than one of the following options is
specified, only the final one takes effect. These options specify whether processing a
symbolic link to a directory entails operating on just the symbolic link or on all files in the
hierarchy rooted at that directory.

These options are independent of --dereference and --no-dereference (-h), which
control whether to modify a symlink or its referent.

‘-H’ If --recursive (-R) is specified and a command line argument is a symbolic
link to a directory, traverse it.

‘-L’ In a recursive traversal, traverse every symbolic link to a directory that is
encountered.

‘-P’ Do not traverse any symbolic links. This is the default if none of -H, -L, or -P
is specified.

2.11 Treating / specially

Certain commands can operate destructively on entire hierarchies. For example, if a user
with appropriate privileges mistakenly runs ‘rm -rf / tmp/junk’, that may remove all files
on the entire system. Since there are so few legitimate uses for such a command, GNU rm

normally declines to operate on any directory that resolves to /. If you really want to try
to remove all the files on your system, you can use the --no-preserve-root option, but
the default behavior, specified by the --preserve-root option, is safer for most purposes.

The commands chgrp, chmod and chown can also operate destructively on entire hier-
archies, so they too support these options. Although, unlike rm, they don’t actually unlink
files, these commands are arguably more dangerous when operating recursively on /, since
they often work much more quickly, and hence damage more files before an alert user can
interrupt them. Tradition and POSIX require these commands to operate recursively on
/, so they default to --no-preserve-root, but using the --preserve-root option makes
them safer for most purposes. For convenience you can specify --preserve-root in an
alias or in a shell function.

Note that the --preserve-root option also ensures that chgrp and chown do not modify
/ even when dereferencing a symlink pointing to /.

2.12 Special built-in utilities

Some programs like nice can invoke other programs; for example, the command ‘nice cat

file’ invokes the program cat by executing the command ‘cat file’. However, special
built-in utilities like exit cannot be invoked this way. For example, the command ‘nice

Chapter 2: Common options 11

exit’ does not have a well-defined behavior: it may generate an error message instead of
exiting.

Here is a list of the special built-in utilities that are standardized by POSIX 1003.1-2004.

. : break continue eval exec exit export readonly return set

shift times trap unset

For example, because ‘.’, ‘:’, and ‘exec’ are special, the commands ‘nice . foo.sh’,
‘nice :’, and ‘nice exec pwd’ do not work as you might expect.

Many shells extend this list. For example, Bash has several extra special built-in utilities
like history, and suspend, and with Bash the command ‘nice suspend’ generates an error
message instead of suspending.

2.13 Standards conformance

In a few cases, the GNU utilities’ default behavior is incompatible with the POSIX stan-
dard. To suppress these incompatibilities, define the POSIXLY_CORRECT environment vari-
able. Unless you are checking for POSIX conformance, you probably do not need to define
POSIXLY_CORRECT.

Newer versions of POSIX are occasionally incompatible with older versions. For example,
older versions of POSIX required the command ‘sort +1’ to sort based on the second and
succeeding fields in each input line, but in POSIX 1003.1-2001 the same command is required
to sort the file named +1, and you must instead use the command ‘sort -k 2’ to get the
field-based sort. To complicate things further, POSIX 1003.1-2008 allows an implementation
to have either the old or the new behavior.

The GNU utilities normally conform to the version of POSIX that is standard for
your system. To cause them to conform to a different version of POSIX, define the
_POSIX2_VERSION environment variable to a value of the form yyyymm specifying the
year and month the standard was adopted. Three values are currently supported for
_POSIX2_VERSION: ‘199209’ stands for POSIX 1003.2-1992, ‘200112’ stands for POSIX
1003.1-2001, and ‘200809’ stands for POSIX 1003.1-2008. For example, if you have a
POSIX 1003.1-2001 system but are running software containing traditional usage like
‘sort +1’ or ‘tail +10’, you can work around the compatibility problems by setting
‘_POSIX2_VERSION=200809’ in your environment.

2.14 coreutils: Multi-call program

The coreutils command invokes an individual utility, either implicitly selected by the last
component of the name used to invoke coreutils, or explicitly with the --coreutils-prog
option. Synopsis:

coreutils --coreutils-prog=PROGRAM ...

The coreutils command is not installed by default, so portable scripts should not rely
on its existence.

12

3 Output of entire files

These commands read and write entire files, possibly transforming them in some way.

3.1 cat: Concatenate and write files

cat copies each file (‘-’ means standard input), or standard input if none are given, to
standard output. Synopsis:

cat [option] [file]...

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-A’
‘--show-all’

Equivalent to -vET.

‘-b’
‘--number-nonblank’

Number all nonempty output lines, starting with 1.

‘-e’ Equivalent to -vE.

‘-E’
‘--show-ends’

Display a ‘$’ after the end of each line.

‘-n’
‘--number’

Number all output lines, starting with 1. This option is ignored if -b is in effect.

‘-s’
‘--squeeze-blank’

Suppress repeated adjacent blank lines; output just one empty line instead of
several.

‘-t’ Equivalent to -vT.

‘-T’
‘--show-tabs’

Display TAB characters as ‘^I’.

‘-u’ Ignored; for POSIX compatibility.

‘-v’
‘--show-nonprinting’

Display control characters except for LFD and TAB using ‘^’ notation and
precede characters that have the high bit set with ‘M-’.

On systems like MS-DOS that distinguish between text and binary files, cat normally
reads and writes in binary mode. However, cat reads in text mode if one of the options
-bensAE is used or if cat is reading from standard input and standard input is a terminal.
Similarly, cat writes in text mode if one of the options -bensAE is used or if standard output
is a terminal.

Chapter 3: Output of entire files 13

An exit status of zero indicates success, and a nonzero value indicates failure.Examples:

Output f’s contents, then standard input, then g’s contents.

cat f - g

Copy standard input to standard output.

cat

3.2 tac: Concatenate and write files in reverse

tac copies each file (‘-’ means standard input), or standard input if none are given, to
standard output, reversing the records (lines by default) in each separately. Synopsis:

tac [option]... [file]...

Records are separated by instances of a string (newline by default). By default, this
separator string is attached to the end of the record that it follows in the file.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-b’
‘--before’

The separator is attached to the beginning of the record that it precedes in the
file.

‘-r’
‘--regex’ Treat the separator string as a regular expression.

‘-s separator’
‘--separator=separator’

Use separator as the record separator, instead of newline. Note an empty
separator is treated as a zero byte. I.e., input and output items are delimited
with ASCII NUL.

On systems like MS-DOS that distinguish between text and binary files, tac reads and
writes in binary mode.

An exit status of zero indicates success, and a nonzero value indicates failure.Example:

Reverse a file character by character.

tac -r -s ’x\|[^x]’

3.3 nl: Number lines and write files

nl writes each file (‘-’ means standard input), or standard input if none are given, to
standard output, with line numbers added to some or all of the lines. Synopsis:

nl [option]... [file]...

nl decomposes its input into (logical) page sections; by default, the line number is reset
to 1 at each logical page section. nl treats all of the input files as a single document; it
does not reset line numbers or logical pages between files.

A logical page consists of three sections: header, body, and footer. Any of the sections
can be empty. Each can be numbered in a different style from the others.

Chapter 3: Output of entire files 14

The beginnings of the sections of logical pages are indicated in the input file by a line
containing exactly one of these delimiter strings:

‘\:\:\:’ start of header;

‘\:\:’ start of body;

‘\:’ start of footer.

The two characters from which these strings are made can be changed from ‘\’ and ‘:’
via options (see below), but the pattern and length of each string cannot be changed.

A section delimiter is replaced by an empty line on output. Any text that comes before
the first section delimiter string in the input file is considered to be part of a body section,
so nl treats a file that contains no section delimiters as a single body section.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-b style’
‘--body-numbering=style’

Select the numbering style for lines in the body section of each logical page.
When a line is not numbered, the current line number is not incremented, but
the line number separator character is still prepended to the line. The styles
are:

‘a’ number all lines,

‘t’ number only nonempty lines (default for body),

‘n’ do not number lines (default for header and footer),

‘pbre’ number only lines that contain a match for the basic regular ex-
pression bre. See Section “Regular Expressions” in The GNU Grep
Manual.

‘-d cd’
‘--section-delimiter=cd’

Set the section delimiter characters to cd; default is ‘\:’. If only c is given,
the second remains ‘:’. (Remember to protect ‘\’ or other metacharacters from
shell expansion with quotes or extra backslashes.)

‘-f style’
‘--footer-numbering=style’

Analogous to --body-numbering.

‘-h style’
‘--header-numbering=style’

Analogous to --body-numbering.

‘-i number’
‘--line-increment=number’

Increment line numbers by number (default 1).

Chapter 3: Output of entire files 15

‘-l number’
‘--join-blank-lines=number’

Consider number (default 1) consecutive empty lines to be one logical line for
numbering, and only number the last one. Where fewer than number consecu-
tive empty lines occur, do not number them. An empty line is one that contains
no characters, not even spaces or tabs.

‘-n format’
‘--number-format=format’

Select the line numbering format (default is rn):

‘ln’ left justified, no leading zeros;

‘rn’ right justified, no leading zeros;

‘rz’ right justified, leading zeros.

‘-p’
‘--no-renumber’

Do not reset the line number at the start of a logical page.

‘-s string’
‘--number-separator=string’

Separate the line number from the text line in the output with string (default
is the TAB character).

‘-v number’
‘--starting-line-number=number’

Set the initial line number on each logical page to number (default 1).

‘-w number’
‘--number-width=number’

Use number characters for line numbers (default 6).

An exit status of zero indicates success, and a nonzero value indicates failure.

3.4 od: Write files in octal or other formats

od writes an unambiguous representation of each file (‘-’ means standard input), or standard
input if none are given. Synopses:

od [option]... [file]...

od [-abcdfilosx]... [file] [[+]offset[.][b]]

od [option]... --traditional [file] [[+]offset[.][b] [[+]label[.][b]]]

Each line of output consists of the offset in the input, followed by groups of data from
the file. By default, od prints the offset in octal, and each group of file data is a C short

int’s worth of input printed as a single octal number.

If offset is given, it specifies how many input bytes to skip before formatting and writing.
By default, it is interpreted as an octal number, but the optional trailing decimal point
causes it to be interpreted as decimal. If no decimal is specified and the offset begins with
‘0x’ or ‘0X’ it is interpreted as a hexadecimal number. If there is a trailing ‘b’, the number
of bytes skipped will be offset multiplied by 512.

Chapter 3: Output of entire files 16

If a command is of both the first and second forms, the second form is assumed if the
last operand begins with ‘+’ or (if there are two operands) a digit. For example, in ‘od foo

10’ and ‘od +10’ the ‘10’ is an offset, whereas in ‘od 10’ the ‘10’ is a file name.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-A radix’
‘--address-radix=radix’

Select the base in which file offsets are printed. radix can be one of the following:

‘d’ decimal;

‘o’ octal;

‘x’ hexadecimal;

‘n’ none (do not print offsets).

The default is octal.

‘--endian=order’
Reorder input bytes, to handle inputs with differing byte orders, or to provide
consistent output independent of the endian convention of the current system.
Swapping is performed according to the specified --type size and endian order,
which can be ‘little’ or ‘big’.

‘-j bytes’
‘--skip-bytes=bytes’

Skip bytes input bytes before formatting and writing. If bytes begins with ‘0x’
or ‘0X’, it is interpreted in hexadecimal; otherwise, if it begins with ‘0’, in octal;
otherwise, in decimal. bytes may be, or may be an integer optionally followed
by, one of the following multiplicative suffixes:

‘b’ => 512 ("blocks")

‘KB’ => 1000 (KiloBytes)

‘K’ => 1024 (KibiBytes)

‘MB’ => 1000*1000 (MegaBytes)

‘M’ => 1024*1024 (MebiBytes)

‘GB’ => 1000*1000*1000 (GigaBytes)

‘G’ => 1024*1024*1024 (GibiBytes)

and so on for ‘T’, ‘P’, ‘E’, ‘Z’, and ‘Y’. Binary prefixes can be used, too: ‘KiB’=‘K’,
‘MiB’=‘M’, and so on.

‘-N bytes’
‘--read-bytes=bytes’

Output at most bytes bytes of the input. Prefixes and suffixes on bytes are
interpreted as for the -j option.

‘-S bytes’
‘--strings[=bytes]’

Instead of the normal output, output only string constants: at least bytes
consecutive ASCII graphic characters, followed by a zero byte (ASCII NUL).
Prefixes and suffixes on bytes are interpreted as for the -j option.

Chapter 3: Output of entire files 17

If bytes is omitted with --strings, the default is 3.

‘-t type’
‘--format=type’

Select the format in which to output the file data. type is a string of one or
more of the below type indicator characters. If you include more than one type
indicator character in a single type string, or use this option more than once,
od writes one copy of each output line using each of the data types that you
specified, in the order that you specified.

Adding a trailing “z” to any type specification appends a display of the single
byte character representation of the printable characters to the output line
generated by the type specification.

‘a’ named character, ignoring high-order bit

‘c’ printable single byte character, C backslash escape or a 3 digit octal
sequence

‘d’ signed decimal

‘f’ floating point (see Section 2.4 [Floating point], page 5)

‘o’ octal

‘u’ unsigned decimal

‘x’ hexadecimal

The type a outputs things like ‘sp’ for space, ‘nl’ for newline, and ‘nul’ for
a zero byte. Only the least significant seven bits of each byte is used; the
high-order bit is ignored. Type c outputs ‘ ’, ‘\n’, and \0, respectively.

Except for types ‘a’ and ‘c’, you can specify the number of bytes to use in
interpreting each number in the given data type by following the type indicator
character with a decimal integer. Alternately, you can specify the size of one of
the C compiler’s built-in data types by following the type indicator character
with one of the following characters. For integers (‘d’, ‘o’, ‘u’, ‘x’):

‘C’ char

‘S’ short

‘I’ int

‘L’ long

For floating point (f):

F float

D double

L long double

‘-v’
‘--output-duplicates’

Output consecutive lines that are identical. By default, when two or more
consecutive output lines would be identical, od outputs only the first line, and
puts just an asterisk on the following line to indicate the elision.

Chapter 3: Output of entire files 18

‘-w[n]’
‘--width[=n]’

Dump n input bytes per output line. This must be a multiple of the least
common multiple of the sizes associated with the specified output types.

If this option is not given at all, the default is 16. If n is omitted, the default
is 32.

The next several options are shorthands for format specifications. GNU od accepts any
combination of shorthands and format specification options. These options accumulate.

‘-a’ Output as named characters. Equivalent to ‘-t a’.

‘-b’ Output as octal bytes. Equivalent to ‘-t o1’.

‘-c’ Output as printable single byte characters, C backslash escapes or 3 digit octal
sequences. Equivalent to ‘-t c’.

‘-d’ Output as unsigned decimal two-byte units. Equivalent to ‘-t u2’.

‘-f’ Output as floats. Equivalent to ‘-t fF’.

‘-i’ Output as decimal ints. Equivalent to ‘-t dI’.

‘-l’ Output as decimal long ints. Equivalent to ‘-t dL’.

‘-o’ Output as octal two-byte units. Equivalent to -t o2.

‘-s’ Output as decimal two-byte units. Equivalent to -t d2.

‘-x’ Output as hexadecimal two-byte units. Equivalent to ‘-t x2’.

‘--traditional’
Recognize the non-option label argument that traditional od accepted. The
following syntax:

od --traditional [file] [[+]offset[.][b] [[+]label[.][b]]]

can be used to specify at most one file and optional arguments specifying an
offset and a pseudo-start address, label. The label argument is interpreted just
like offset, but it specifies an initial pseudo-address. The pseudo-addresses are
displayed in parentheses following any normal address.

An exit status of zero indicates success, and a nonzero value indicates failure.

3.5 base32: Transform data into printable data

base32 transforms data read from a file, or standard input, into (or from) base32 encoded
form. The base32 encoded form uses printable ASCII characters to represent binary data.
The usage and options of this command are precisely the same as for base64. See Section 3.6
[base64 invocation], page 19.

Chapter 3: Output of entire files 19

3.6 base64: Transform data into printable data

base64 transforms data read from a file, or standard input, into (or from) base64 encoded
form. The base64 encoded form uses printable ASCII characters to represent binary data.
Synopses:

base64 [option]... [file]

base64 --decode [option]... [file]

The base64 encoding expands data to roughly 133% of the original. The base32 encoding
expands data to roughly 160% of the original. The format conforms to RFC 4648 (https://
tools.ietf.org/search/rfc4648).

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-w cols’
‘--wrap=cols’

During encoding, wrap lines after cols characters. This must be a positive
number.

The default is to wrap after 76 characters. Use the value 0 to disable line
wrapping altogether.

‘-d’
‘--decode’

Change the mode of operation, from the default of encoding data, to decoding
data. Input is expected to be base64 encoded data, and the output will be the
original data.

‘-i’
‘--ignore-garbage’

When decoding, newlines are always accepted. During decoding, ignore unrec-
ognized bytes, to permit distorted data to be decoded.

An exit status of zero indicates success, and a nonzero value indicates failure.

3.7 basenc: Transform data into printable data

basenc transforms data read from a file, or standard input, into (or from) various common
encoding forms. The encoded form uses printable ASCII characters to represent binary
data.

Synopses:

basenc encoding [option]... [file]

basenc encoding --decode [option]... [file]

The encoding argument is required. If file is omitted, reads input from stdin. The
-w/--wrap,-i/--ignore-garbage, -d/--decode options of this command are precisely the
same as for base64. See Section 3.6 [base64 invocation], page 19.

Supported encodings are:

‘--base64’
Encode into (or decode from with -d/--decode) base64 form. The format
conforms to RFC 4648#4 (https://tools.ietf.org/search/rfc4648#
section-4). Equivalent to the base64 command.

https://tools.ietf.org/search/rfc4648
https://tools.ietf.org/search/rfc4648
https://tools.ietf.org/search/rfc4648#section-4
https://tools.ietf.org/search/rfc4648#section-4

Chapter 3: Output of entire files 20

‘--base64url’
Encode into (or decode from with -d/--decode) file-and-url-safe base64 form
(using ‘_’ and ‘-’ instead of ‘+’ and ‘/’). The format conforms to RFC 4648#5
(https://tools.ietf.org/search/rfc4648#section-5).

‘--base32’
Encode into (or decode from with -d/--decode) base32 form. The encoded
data uses the ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ234567=’ characters. The for-
mat conforms to RFC 4648#6 (https://tools.ietf.org/search/rfc4648#
section-6). Equivalent to the base32 command.

‘--base32hex’
Encode into (or decode from with -d/--decode) Extended Hex Alphabet
base32 form. The encoded data uses the ‘0123456789ABCDEFGHIJKLMNOPQRSTUV=’
characters. The format conforms to RFC 4648#7 (https://tools.ietf.org/
search/rfc4648#section-7).

‘--base16’
Encode into (or decode from with -d/--decode) base16 (hexadecimal) form.
The encoded data uses the ‘0123456789ABCDEF’ characters. The format
conforms to RFC 4648#8 (https://tools.ietf.org/search/rfc4648#
section-8).

‘--base2lsbf’
Encode into (or decode from with -d/--decode) binary string form (‘0’ and
‘1’) with the least significant bit of every byte first.

‘--base2msbf’
Encode into (or decode from with -d/--decode) binary string form (‘0’ and
‘1’) with the most significant bit of every byte first.

‘--z85’ Encode into (or decode from with -d/--decode) Z85 form (a modified Ascii85
form). The encoded data uses the ‘0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTU
VWXYZ.-:+=^!/*?&<>()[]{}@%$#’. characters. The format conforms to
ZeroMQ spec:32/Z85 (https://rfc.zeromq.org/spec:32/Z85/).

When encoding with --z85, input length must be a multiple of 4; when decoding
with --z85, input length must be a multiple of 5.

Encoding/decoding examples:

$ printf ’\376\117\202’ | basenc --base64

/k+C

$ printf ’\376\117\202’ | basenc --base64url

_k-C

$ printf ’\376\117\202’ | basenc --base32

7ZHYE===

$ printf ’\376\117\202’ | basenc --base32hex

VP7O4===

https://tools.ietf.org/search/rfc4648#section-5
https://tools.ietf.org/search/rfc4648#section-5
https://tools.ietf.org/search/rfc4648#section-6
https://tools.ietf.org/search/rfc4648#section-6
https://tools.ietf.org/search/rfc4648#section-7
https://tools.ietf.org/search/rfc4648#section-7
https://tools.ietf.org/search/rfc4648#section-8
https://tools.ietf.org/search/rfc4648#section-8
https://rfc.zeromq.org/spec:32/Z85/

21

$ printf ’\376\117\202’ | basenc --base16

FE4F82

$ printf ’\376\117\202’ | basenc --base2lsbf

011111111111001001000001

$ printf ’\376\117\202’ | basenc --base2msbf

111111100100111110000010

$ printf ’\376\117\202\000’ | basenc --z85

@.FaC

$ printf 01010100 | basenc --base2msbf --decode

T

$ printf 01010100 | basenc --base2lsbf --decode

*

22

4 Formatting file contents

These commands reformat the contents of files.

4.1 fmt: Reformat paragraph text

fmt fills and joins lines to produce output lines of (at most) a given number of characters
(75 by default). Synopsis:

fmt [option]... [file]...

fmt reads from the specified file arguments (or standard input if none are given), and
writes to standard output.

By default, blank lines, spaces between words, and indentation are preserved in the
output; successive input lines with different indentation are not joined; tabs are expanded
on input and introduced on output.

fmt prefers breaking lines at the end of a sentence, and tries to avoid line breaks after the
first word of a sentence or before the last word of a sentence. A sentence break is defined
as either the end of a paragraph or a word ending in any of ‘.?!’, followed by two spaces
or end of line, ignoring any intervening parentheses or quotes. Like TEX, fmt reads entire
“paragraphs” before choosing line breaks; the algorithm is a variant of that given by Donald
E. Knuth and Michael F. Plass in “Breaking Paragraphs Into Lines”, Software—Practice
& Experience 11, 11 (November 1981), 1119–1184.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-c’
‘--crown-margin’

Crown margin mode: preserve the indentation of the first two lines within a
paragraph, and align the left margin of each subsequent line with that of the
second line.

‘-t’
‘--tagged-paragraph’

Tagged paragraph mode: like crown margin mode, except that if indentation
of the first line of a paragraph is the same as the indentation of the second, the
first line is treated as a one-line paragraph.

‘-s’
‘--split-only’

Split lines only. Do not join short lines to form longer ones. This prevents sam-
ple lines of code, and other such “formatted” text from being unduly combined.

‘-u’
‘--uniform-spacing’

Uniform spacing. Reduce spacing between words to one space, and spacing
between sentences to two spaces.

Chapter 4: Formatting file contents 23

‘-width’
‘-w width’
‘--width=width’

Fill output lines up to width characters (default 75 or goal plus 10, if goal is
provided).

‘-g goal’
‘--goal=goal’

fmt initially tries to make lines goal characters wide. By default, this is 7%
shorter than width.

‘-p prefix’
‘--prefix=prefix’

Only lines beginning with prefix (possibly preceded by whitespace) are subject
to formatting. The prefix and any preceding whitespace are stripped for the
formatting and then re-attached to each formatted output line. One use is to
format certain kinds of program comments, while leaving the code unchanged.

An exit status of zero indicates success, and a nonzero value indicates failure.

4.2 pr: Paginate or columnate files for printing

pr writes each file (‘-’ means standard input), or standard input if none are given, to
standard output, paginating and optionally outputting in multicolumn format; optionally
merges all files, printing all in parallel, one per column. Synopsis:

pr [option]... [file]...

By default, a 5-line header is printed at each page: two blank lines; a line with the date,
the file name, and the page count; and two more blank lines. A footer of five blank lines
is also printed. The default page length is 66 lines. The default number of text lines is
therefore 56. The text line of the header takes the form ‘date string page’, with spaces
inserted around string so that the line takes up the full page width. Here, date is the date
(see the -D or --date-format option for details), string is the centered header string, and
page identifies the page number. The LC_MESSAGES locale category affects the spelling of
page; in the default C locale, it is ‘Page number’ where number is the decimal page number.

Form feeds in the input cause page breaks in the output. Multiple form feeds produce
empty pages.

Columns are of equal width, separated by an optional string (default is ‘space’). For
multicolumn output, lines will always be truncated to page width (default 72), unless you
use the -J option. For single column output no line truncation occurs by default. Use -W

option to truncate lines in that case.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘+first_page[:last_page]’
‘--pages=first_page[:last_page]’

Begin printing with page first page and stop with last page. Missing
‘:last_page’ implies end of file. While estimating the number of skipped
pages each form feed in the input file results in a new page. Page counting

Chapter 4: Formatting file contents 24

with and without ‘+first_page’ is identical. By default, counting starts with
the first page of input file (not first page printed). Line numbering may be
altered by -N option.

‘-column’
‘--columns=column’

With each single file, produce column columns of output (default is 1) and print
columns down, unless -a is used. The column width is automatically decreased
as column increases; unless you use the -W/-w option to increase page width as
well. This option might well cause some lines to be truncated. The number of
lines in the columns on each page are balanced. The options -e and -i are on
for multiple text-column output. Together with -J option column alignment
and line truncation is turned off. Lines of full length are joined in a free field
format and -S option may set field separators. -column may not be used with
-m option.

‘-a’
‘--across’

With each single file, print columns across rather than down. The -column

option must be given with column greater than one. If a line is too long to fit
in a column, it is truncated.

‘-c’
‘--show-control-chars’

Print control characters using hat notation (e.g., ‘^G’); print other nonprinting
characters in octal backslash notation. By default, nonprinting characters are
not changed.

‘-d’
‘--double-space’

Double space the output.

‘-D format’
‘--date-format=format’

Format header dates using format, using the same conventions as for the com-
mand ‘date +format’. See Section 21.1 [date invocation], page 187. Except
for directives, which start with ‘%’, characters in format are printed unchanged.
You can use this option to specify an arbitrary string in place of the header
date, e.g., --date-format="Monday morning".

The default date format is ‘%Y-%m-%d %H:%M’ (for example, ‘2001-12-04
23:59’); but if the POSIXLY_CORRECT environment variable is set and the
LC_TIME locale category specifies the POSIX locale, the default is ‘%b %e

%H:%M %Y’ (for example, ‘Dec 4 23:59 2001’.

Timestamps are listed according to the time zone rules specified by the TZ

environment variable, or by the system default rules if TZ is not set. See Section
“Specifying the Time Zone with TZ” in The GNU C Library Reference Manual.

Chapter 4: Formatting file contents 25

‘-e[in-tabchar[in-tabwidth]]’
‘--expand-tabs[=in-tabchar[in-tabwidth]]’

Expand tabs to spaces on input. Optional argument in-tabchar is the input
tab character (default is the TAB character). Second optional argument in-
tabwidth is the input tab character’s width (default is 8).

‘-f’
‘-F’
‘--form-feed’

Use a form feed instead of newlines to separate output pages. This does not
alter the default page length of 66 lines.

‘-h header’
‘--header=header’

Replace the file name in the header with the centered string header. When
using the shell, header should be quoted and should be separated from -h by a
space.

‘-i[out-tabchar[out-tabwidth]]’
‘--output-tabs[=out-tabchar[out-tabwidth]]’

Replace spaces with tabs on output. Optional argument out-tabchar is the
output tab character (default is the TAB character). Second optional argument
out-tabwidth is the output tab character’s width (default is 8).

‘-J’
‘--join-lines’

Merge lines of full length. Used together with the column options -column, -a
-column or -m. Turns off -W/-w line truncation; no column alignment used;
may be used with --sep-string[=string]. -J has been introduced (together
with -W and --sep-string) to disentangle the old (POSIX-compliant) options
-w and -s along with the three column options.

‘-l page_length’
‘--length=page_length’

Set the page length to page length (default 66) lines, including the lines of the
header [and the footer]. If page length is less than or equal to 10, the header
and footer are omitted, as if the -t option had been given.

‘-m’
‘--merge’ Merge and print all files in parallel, one in each column. If a line is too

long to fit in a column, it is truncated, unless the -J option is used.
--sep-string[=string] may be used. Empty pages in some files (form
feeds set) produce empty columns, still marked by string. The result is a
continuous line numbering and column marking throughout the whole merged
file. Completely empty merged pages show no separators or line numbers. The
default header becomes ‘date page’ with spaces inserted in the middle; this
may be used with the -h or --header option to fill up the middle blank part.

Chapter 4: Formatting file contents 26

‘-n[number-separator[digits]]’
‘--number-lines[=number-separator[digits]]’

Provide digits digit line numbering (default for digits is 5). With multicolumn
output the number occupies the first digits column positions of each text column
or only each line of -m output. With single column output the number precedes
each line just as -m does. Default counting of the line numbers starts with
the first line of the input file (not the first line printed, compare the --page

option and -N option). Optional argument number-separator is the character
appended to the line number to separate it from the text followed. The default
separator is the TAB character. In a strict sense a TAB is always printed with
single column output only. The TAB width varies with the TAB position, e.g.,
with the left margin specified by -o option. With multicolumn output priority
is given to ‘equal width of output columns’ (a POSIX specification). The
TAB width is fixed to the value of the first column and does not change with
different values of left margin. That means a fixed number of spaces is always
printed in the place of the number-separator TAB. The tabification depends
upon the output position.

‘-N line_number’
‘--first-line-number=line_number’

Start line counting with the number line number at first line of first page printed
(in most cases not the first line of the input file).

‘-o margin’
‘--indent=margin’

Indent each line with a margin margin spaces wide (default is zero). The total
page width is the size of the margin plus the page width set with the -W/-w

option. A limited overflow may occur with numbered single column output
(compare -n option).

‘-r’
‘--no-file-warnings’

Do not print a warning message when an argument file cannot be opened. (The
exit status will still be nonzero, however.)

‘-s[char]’
‘--separator[=char]’

Separate columns by a single character char. The default for char is the TAB
character without -w and ‘no character’ with -w. Without -s the default
separator ‘space’ is set. -s[char] turns off line truncation of all three column
options (-COLUMN|-a -COLUMN|-m) unless -w is set. This is a POSIX-compliant
formulation.

‘-S[string]’
‘--sep-string[=string]’

Use string to separate output columns. The -S option doesn’t affect the -W/-w
option, unlike the -s option which does. It does not affect line truncation
or column alignment. Without -S, and with -J, pr uses the default output
separator, TAB. Without -S or -J, pr uses a ‘space’ (same as -S" "). If no
‘string’ argument is specified, ‘""’ is assumed.

Chapter 4: Formatting file contents 27

‘-t’
‘--omit-header’

Do not print the usual header [and footer] on each page, and do not fill out
the bottom of pages (with blank lines or a form feed). No page structure is
produced, but form feeds set in the input files are retained. The predefined
pagination is not changed. -t or -T may be useful together with other options;
e.g.: -t -e4, expand TAB characters in the input file to 4 spaces but don’t
make any other changes. Use of -t overrides -h.

‘-T’
‘--omit-pagination’

Do not print header [and footer]. In addition eliminate all form feeds set in the
input files.

‘-v’
‘--show-nonprinting’

Print nonprinting characters in octal backslash notation.

‘-w page_width’
‘--width=page_width’

Set page width to page width characters for multiple text-column output only
(default for page width is 72). The specified page width is rounded down so
that columns have equal width. -s[CHAR] turns off the default page width and
any line truncation and column alignment. Lines of full length are merged,
regardless of the column options set. No page width setting is possible with
single column output. A POSIX-compliant formulation.

‘-W page_width’
‘--page_width=page_width’

Set the page width to page width characters, honored with and without a col-
umn option. With a column option, the specified page width is rounded down
so that columns have equal width. Text lines are truncated, unless -J is used.
Together with one of the three column options (-column, -a -column or -m)
column alignment is always used. The separator options -S or -s don’t disable
the -W option. Default is 72 characters. Without -W page_width and without
any of the column options NO line truncation is used (defined to keep down-
ward compatibility and to meet most frequent tasks). That’s equivalent to -W

72 -J. The header line is never truncated.

An exit status of zero indicates success, and a nonzero value indicates failure.

4.3 fold: Wrap input lines to fit in specified width

fold writes each file (- means standard input), or standard input if none are given, to
standard output, breaking long lines. Synopsis:

fold [option]... [file]...

By default, fold breaks lines wider than 80 columns. The output is split into as many
lines as necessary.

fold counts screen columns by default; thus, a tab may count more than one column,
backspace decreases the column count, and carriage return sets the column to zero.

Chapter 4: Formatting file contents 28

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-b’
‘--bytes’ Count bytes rather than columns, so that tabs, backspaces, and carriage returns

are each counted as taking up one column, just like other characters.

‘-s’
‘--spaces’

Break at word boundaries: the line is broken after the last blank before the
maximum line length. If the line contains no such blanks, the line is broken at
the maximum line length as usual.

‘-w width’
‘--width=width’

Use a maximum line length of width columns instead of 80.

For compatibility fold supports an obsolete option syntax -width. New scripts
should use -w width instead.

An exit status of zero indicates success, and a nonzero value indicates failure.

29

5 Output of parts of files

These commands output pieces of the input.

5.1 head: Output the first part of files

head prints the first part (10 lines by default) of each file; it reads from standard input if
no files are given or when given a file of -. Synopsis:

head [option]... [file]...

If more than one file is specified, head prints a one-line header consisting of:

==> file name <==

before the output for each file.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-c [-]num’
‘--bytes=[-]num’

Print the first num bytes, instead of initial lines. However, if num is prefixed
with a ‘-’, print all but the last num bytes of each file. num may be, or may be
an integer optionally followed by, one of the following multiplicative suffixes:

‘b’ => 512 ("blocks")

‘KB’ => 1000 (KiloBytes)

‘K’ => 1024 (KibiBytes)

‘MB’ => 1000*1000 (MegaBytes)

‘M’ => 1024*1024 (MebiBytes)

‘GB’ => 1000*1000*1000 (GigaBytes)

‘G’ => 1024*1024*1024 (GibiBytes)

and so on for ‘T’, ‘P’, ‘E’, ‘Z’, and ‘Y’. Binary prefixes can be used, too: ‘KiB’=‘K’,
‘MiB’=‘M’, and so on.

‘-n [-]num’
‘--lines=[-]num’

Output the first num lines. However, if num is prefixed with a ‘-’, print all but
the last num lines of each file. Size multiplier suffixes are the same as with the
-c option.

‘-q’
‘--quiet’
‘--silent’

Never print file name headers.

‘-v’
‘--verbose’

Always print file name headers.

‘-z’
‘--zero-terminated’

Delimit items with a zero byte rather than a newline (ASCII LF). I.e., treat
input as items separated by ASCII NUL and terminate output items with ASCII

Chapter 5: Output of parts of files 30

NUL. This option can be useful in conjunction with ‘perl -0’ or ‘find -print0’
and ‘xargs -0’ which do the same in order to reliably handle arbitrary file names
(even those containing blanks or other special characters).

For compatibility head also supports an obsolete option syntax -[num][bkm][cqv],
which is recognized only if it is specified first. num is a decimal number optionally fol-
lowed by a size letter (‘b’, ‘k’, ‘m’) as in -c, or ‘l’ to mean count by lines, or other option
letters (‘cqv’). Scripts intended for standard hosts should use -c num or -n num instead.
If your script must also run on hosts that support only the obsolete syntax, it is usually
simpler to avoid head, e.g., by using ‘sed 5q’ instead of ‘head -5’.

An exit status of zero indicates success, and a nonzero value indicates failure.

5.2 tail: Output the last part of files

tail prints the last part (10 lines by default) of each file; it reads from standard input if
no files are given or when given a file of ‘-’. Synopsis:

tail [option]... [file]...

If more than one file is specified, tail prints a one-line header before the output for
each file, consisting of:

==> file name <==

For further processing of tail output, it can be useful to convert the file headers to line
prefixes, which can be done like:

tail ... |

awk ’

/^==> .* <==$/ {prefix=substr($0,5,length-8)":"; next}

{print prefix$0}

’ | ...

GNU tail can output any amount of data (some other versions of tail cannot). It
also has no -r option (print in reverse), since reversing a file is really a different job from
printing the end of a file; BSD tail (which is the one with -r) can only reverse files that
are at most as large as its buffer, which is typically 32 KiB. A more reliable and versatile
way to reverse files is the GNU tac command.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-c [+]num’
‘--bytes=[+]num’

Output the last num bytes, instead of final lines. However, if num is prefixed
with a ‘+’, start printing with byte num from the start of each file, instead of
from the end. num may be, or may be an integer optionally followed by, one of
the following multiplicative suffixes:

‘b’ => 512 ("blocks")

‘KB’ => 1000 (KiloBytes)

‘K’ => 1024 (KibiBytes)

‘MB’ => 1000*1000 (MegaBytes)

‘M’ => 1024*1024 (MebiBytes)

Chapter 5: Output of parts of files 31

‘GB’ => 1000*1000*1000 (GigaBytes)

‘G’ => 1024*1024*1024 (GibiBytes)

and so on for ‘T’, ‘P’, ‘E’, ‘Z’, and ‘Y’. Binary prefixes can be used, too: ‘KiB’=‘K’,
‘MiB’=‘M’, and so on.

‘-f’
‘--follow[=how]’

Loop forever trying to read more characters at the end of the file, presumably
because the file is growing. If more than one file is given, tail prints a header
whenever it gets output from a different file, to indicate which file that output
is from.

There are two ways to specify how you’d like to track files with this option, but
that difference is noticeable only when a followed file is removed or renamed.
If you’d like to continue to track the end of a growing file even after it has
been unlinked, use --follow=descriptor. This is the default behavior, but
it is not useful if you’re tracking a log file that may be rotated (removed or
renamed, then reopened). In that case, use --follow=name to track the named
file, perhaps by reopening it periodically to see if it has been removed and
recreated by some other program. Note that the inotify-based implementation
handles this case without the need for any periodic reopening.

No matter which method you use, if the tracked file is determined to have
shrunk, tail prints a message saying the file has been truncated and resumes
tracking from the start of the file, assuming it has been truncated to 0, which
is the usual truncation operation for log files.

When a file is removed, tail’s behavior depends on whether it is following the
name or the descriptor. When following by name, tail can detect that a file
has been removed and gives a message to that effect, and if --retry has been
specified it will continue checking periodically to see if the file reappears. When
following a descriptor, tail does not detect that the file has been unlinked or
renamed and issues no message; even though the file may no longer be accessible
via its original name, it may still be growing.

The option values ‘descriptor’ and ‘name’ may be specified only with the long
form of the option, not with -f.

The -f option is ignored if no file operand is specified and standard input is a
FIFO or a pipe. Likewise, the -f option has no effect for any operand specified
as ‘-’, when standard input is a FIFO or a pipe.

With kernel inotify support, output is triggered by file changes and is gener-
ally very prompt. Otherwise, tail sleeps for one second between checks— use
--sleep-interval=n to change that default—which can make the output ap-
pear slightly less responsive or bursty. When using tail without inotify support,
you can make it more responsive by using a sub-second sleep interval, e.g., via
an alias like this:

alias tail=’tail -s.1’

‘-F’ This option is the same as --follow=name --retry. That is, tail will attempt
to reopen a file when it is removed. Should this fail, tail will keep trying until
it becomes accessible again.

Chapter 5: Output of parts of files 32

‘--max-unchanged-stats=n’
When tailing a file by name, if there have been n (default n=5) consecutive
iterations for which the file has not changed, then open/fstat the file to de-
termine if that file name is still associated with the same device/inode-number
pair as before. When following a log file that is rotated, this is approximately
the number of seconds between when tail prints the last pre-rotation lines and
when it prints the lines that have accumulated in the new log file. This option
is meaningful only when polling (i.e., without inotify) and when following by
name.

‘-n [+]num’
‘--lines=[+]’

Output the last num lines. However, if num is prefixed with a ‘+’, start printing
with line num from the start of each file, instead of from the end. Size multiplier
suffixes are the same as with the -c option.

‘--pid=pid’
When following by name or by descriptor, you may specify the process ID,
pid, of the sole writer of all file arguments. Then, shortly after that process
terminates, tail will also terminate. This will work properly only if the writer
and the tailing process are running on the same machine. For example, to save
the output of a build in a file and to watch the file grow, if you invoke make

and tail like this then the tail process will stop when your build completes.
Without this option, you would have had to kill the tail -f process yourself.

$ make >& makerr & tail --pid=$! -f makerr

If you specify a pid that is not in use or that does not correspond to the process
that is writing to the tailed files, then tail may terminate long before any
files stop growing or it may not terminate until long after the real writer has
terminated. Note that --pid cannot be supported on some systems; tail will
print a warning if this is the case.

‘-q’
‘--quiet’
‘--silent’

Never print file name headers.

‘--retry’ Indefinitely try to open the specified file. This option is useful mainly when
following (and otherwise issues a warning).

When following by file descriptor (i.e., with --follow=descriptor), this option
only affects the initial open of the file, as after a successful open, tail will start
following the file descriptor.

When following by name (i.e., with --follow=name), tail infinitely retries to
re-open the given files until killed.

Without this option, when tail encounters a file that doesn’t exist or is oth-
erwise inaccessible, it reports that fact and never checks it again.

Chapter 5: Output of parts of files 33

‘-s number’
‘--sleep-interval=number’

Change the number of seconds to wait between iterations (the default is 1.0).
During one iteration, every specified file is checked to see if it has changed size.
When tail uses inotify, this polling-related option is usually ignored. However,
if you also specify --pid=p, tail checks whether process p is alive at least every
number seconds. The number must be non-negative and can be a floating-point
number in either the current or the C locale. See Section 2.4 [Floating point],
page 5.

‘-v’
‘--verbose’

Always print file name headers.

‘-z’
‘--zero-terminated’

Delimit items with a zero byte rather than a newline (ASCII LF). I.e., treat
input as items separated by ASCII NUL and terminate output items with ASCII
NUL. This option can be useful in conjunction with ‘perl -0’ or ‘find -print0’
and ‘xargs -0’ which do the same in order to reliably handle arbitrary file names
(even those containing blanks or other special characters).

For compatibility tail also supports an obsolete usage ‘tail -[num][bcl][f] [file]’,
which is recognized only if it does not conflict with the usage described above. This obsolete
form uses exactly one option and at most one file. In the option, num is an optional decimal
number optionally followed by a size letter (‘b’, ‘c’, ‘l’) to mean count by 512-byte blocks,
bytes, or lines, optionally followed by ‘f’ which has the same meaning as -f.

On systems not conforming to POSIX 1003.1-2001, the leading ‘-’ can be replaced by
‘+’ in the traditional option syntax with the same meaning as in counts, and on obsolete
systems predating POSIX 1003.1-2001 traditional usage overrides normal usage when the
two conflict. This behavior can be controlled with the _POSIX2_VERSION environment
variable (see Section 2.13 [Standards conformance], page 11).

Scripts intended for use on standard hosts should avoid traditional syntax and should
use -c num[b], -n num, and/or -f instead. If your script must also run on hosts that
support only the traditional syntax, you can often rewrite it to avoid problematic usages,
e.g., by using ‘sed -n ’$p’’ rather than ‘tail -1’. If that’s not possible, the script can use a
test like ‘if tail -c +1 </dev/null >/dev/null 2>&1; then ...’ to decide which syntax
to use.

Even if your script assumes the standard behavior, you should still beware usages whose
behaviors differ depending on the POSIX version. For example, avoid ‘tail - main.c’,
since it might be interpreted as either ‘tail main.c’ or as ‘tail -- - main.c’; avoid ‘tail
-c 4’, since it might mean either ‘tail -c4’ or ‘tail -c 10 4’; and avoid ‘tail +4’, since it
might mean either ‘tail ./+4’ or ‘tail -n +4’.

An exit status of zero indicates success, and a nonzero value indicates failure.

Chapter 5: Output of parts of files 34

5.3 split: Split a file into pieces.

split creates output files containing consecutive or interleaved sections of input (standard
input if none is given or input is ‘-’). Synopsis:

split [option] [input [prefix]]

By default, split puts 1000 lines of input (or whatever is left over for the last section),
into each output file.

The output files’ names consist of prefix (‘x’ by default) followed by a group of characters
(‘aa’, ‘ab’, . . . by default), such that concatenating the output files in traditional sorted
order by file name produces the original input file (except -nr/n). By default split will
initially create files with two generated suffix characters, and will increase this width by
two when the next most significant position reaches the last character. (‘yz’, ‘zaaa’, ‘zaab’,
. . .). In this way an arbitrary number of output files are supported, which sort as described
above, even in the presence of an --additional-suffix option. If the -a option is specified
and the output file names are exhausted, split reports an error without deleting the output
files that it did create.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-l lines’
‘--lines=lines’

Put lines lines of input into each output file. If --separator is specified, then
lines determines the number of records.

For compatibility split also supports an obsolete option syntax -lines. New
scripts should use -l lines instead.

‘-b size’
‘--bytes=size’

Put size bytes of input into each output file. size may be, or may be an integer
optionally followed by, one of the following multiplicative suffixes:

‘b’ => 512 ("blocks")

‘KB’ => 1000 (KiloBytes)

‘K’ => 1024 (KibiBytes)

‘MB’ => 1000*1000 (MegaBytes)

‘M’ => 1024*1024 (MebiBytes)

‘GB’ => 1000*1000*1000 (GigaBytes)

‘G’ => 1024*1024*1024 (GibiBytes)

and so on for ‘T’, ‘P’, ‘E’, ‘Z’, and ‘Y’. Binary prefixes can be used, too: ‘KiB’=‘K’,
‘MiB’=‘M’, and so on.

‘-C size’
‘--line-bytes=size’

Put into each output file as many complete lines of input as possible without
exceeding size bytes. Individual lines or records longer than size bytes are
broken into multiple files. size has the same format as for the --bytes option.
If --separator is specified, then lines determines the number of records.

Chapter 5: Output of parts of files 35

‘--filter=command’
With this option, rather than simply writing to each output file, write through
a pipe to the specified shell command for each output file. command should use
the $FILE environment variable, which is set to a different output file name for
each invocation of the command. For example, imagine that you have a 1TiB
compressed file that, if uncompressed, would be too large to reside on disk, yet
you must split it into individually-compressed pieces of a more manageable size.
To do that, you might run this command:

xz -dc BIG.xz | split -b200G --filter=’xz > $FILE.xz’ - big-

Assuming a 10:1 compression ratio, that would create about fifty 20GiB files
with names big-aa.xz, big-ab.xz, big-ac.xz, etc.

‘-n chunks’
‘--number=chunks’

Split input to chunks output files where chunks may be:

n generate n files based on current size of input

k/n only output kth of n to stdout

l/n generate n files without splitting lines or records

l/k/n likewise but only output kth of n to stdout

r/n like ‘l’ but use round robin distribution

r/k/n likewise but only output kth of n to stdout

Any excess bytes remaining after dividing the input into n chunks, are assigned
to the last chunk. Any excess bytes appearing after the initial calculation are
discarded (except when using ‘r’ mode).

All n files are created even if there are fewer than n lines, or the input is
truncated.

For ‘l’ mode, chunks are approximately input size / n. The input is partitioned
into n equal sized portions, with the last assigned any excess. If a line starts
within a partition it is written completely to the corresponding file. Since lines
or records are not split even if they overlap a partition, the files written can be
larger or smaller than the partition size, and even empty if a line/record is so
long as to completely overlap the partition.

For ‘r’ mode, the size of input is irrelevant, and so can be a pipe for example.

‘-a length’
‘--suffix-length=length’

Use suffixes of length length. If a length of 0 is specified, this is the same as
if (any previous) -a was not specified, and thus enables the default behavior,
which starts the suffix length at 2, and unless -n or --numeric-suffixes=from
is specified, will auto increase the length by 2 as required.

‘-d’
‘--numeric-suffixes[=from]’

Use digits in suffixes rather than lower-case letters. The numerical suffix counts
from from if specified, 0 otherwise.

from is supported with the long form option, and is used to either set the initial
suffix for a single run, or to set the suffix offset for independently split inputs,

Chapter 5: Output of parts of files 36

and consequently the auto suffix length expansion described above is disabled.
Therefore you may also want to use option -a to allow suffixes beyond ‘99’.
Note if option --number is specified and the number of files is less than from, a
single run is assumed and the minimum suffix length required is automatically
determined.

‘-x’
‘--hex-suffixes[=from]’

Like --numeric-suffixes, but use hexadecimal numbers (in lower case).

‘--additional-suffix=suffix’
Append an additional suffix to output file names. suffix must not contain slash.

‘-e’
‘--elide-empty-files’

Suppress the generation of zero-length output files. This can happen with the
--number option if a file is (truncated to be) shorter than the number requested,
or if a line is so long as to completely span a chunk. The output file sequence
numbers, always run consecutively even when this option is specified.

‘-t separator’
‘--separator=separator’

Use character separator as the record separator instead of the default newline
character (ASCII LF). To specify ASCII NUL as the separator, use the two-
character string ‘\0’, e.g., ‘split -t ’\0’’.

‘-u’
‘--unbuffered’

Immediately copy input to output in --number r/... mode, which is a much
slower mode of operation.

‘--verbose’
Write a diagnostic just before each output file is opened.

An exit status of zero indicates success, and a nonzero value indicates failure.Here are a
few examples to illustrate how the --number (-n) option works:

Notice how, by default, one line may be split onto two or more:

$ seq -w 6 10 > k; split -n3 k; head xa?

==> xaa <==

06

07

==> xab <==

08

0

==> xac <==

9

10

Use the "l/" modifier to suppress that:

$ seq -w 6 10 > k; split -nl/3 k; head xa?

Chapter 5: Output of parts of files 37

==> xaa <==

06

07

==> xab <==

08

09

==> xac <==

10

Use the "r/" modifier to distribute lines in a round-robin fashion:

$ seq -w 6 10 > k; split -nr/3 k; head xa?

==> xaa <==

06

09

==> xab <==

07

10

==> xac <==

08

You can also extract just the Kth chunk. This extracts and prints just the 7th "chunk"
of 33:

$ seq 100 > k; split -nl/7/33 k

20

21

22

5.4 csplit: Split a file into context-determined pieces

csplit creates zero or more output files containing sections of input (standard input if
input is ‘-’). Synopsis:

csplit [option]... input pattern...

The contents of the output files are determined by the pattern arguments, as detailed
below. An error occurs if a pattern argument refers to a nonexistent line of the input file
(e.g., if no remaining line matches a given regular expression). After every pattern has been
matched, any remaining input is copied into one last output file.

By default, csplit prints the number of bytes written to each output file after it has
been created.

The types of pattern arguments are:

‘n’ Create an output file containing the input up to but not including line n (a posi-
tive integer). If followed by a repeat count, also create an output file containing
the next n lines of the input file once for each repeat.

Chapter 5: Output of parts of files 38

‘/regexp/[offset]’
Create an output file containing the current line up to (but not including) the
next line of the input file that contains a match for regexp. The optional offset
is an integer. If it is given, the input up to (but not including) the matching
line plus or minus offset is put into the output file, and the line after that begins
the next section of input. Note lines within a negative offset of a regexp pattern
are not matched in subsequent regexp patterns.

‘%regexp%[offset]’
Like the previous type, except that it does not create an output file, so that
section of the input file is effectively ignored.

‘{repeat-count}’
Repeat the previous pattern repeat-count additional times. The repeat-count
can either be a positive integer or an asterisk, meaning repeat as many times
as necessary until the input is exhausted.

The output files’ names consist of a prefix (‘xx’ by default) followed by a suffix. By
default, the suffix is an ascending sequence of two-digit decimal numbers from ‘00’ to ‘99’.
In any case, concatenating the output files in sorted order by file name produces the original
input file, excluding portions skipped with a %regexp% pattern or the --suppress-matched
option.

By default, if csplit encounters an error or receives a hangup, interrupt, quit, or ter-
minate signal, it removes any output files that it has created so far before it exits.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-f prefix’
‘--prefix=prefix’

Use prefix as the output file name prefix.

‘-b format’
‘--suffix-format=format’

Use format as the output file name suffix. When this option is specified, the
suffix string must include exactly one printf(3)-style conversion specification,
possibly including format specification flags, a field width, a precision specifi-
cations, or all of these kinds of modifiers. The format letter must convert a
binary unsigned integer argument to readable form. The format letters ‘d’ and
‘i’ are aliases for ‘u’, and the ‘u’, ‘o’, ‘x’, and ‘X’ conversions are allowed. The
entire format is given (with the current output file number) to sprintf(3) to
form the file name suffixes for each of the individual output files in turn. If this
option is used, the --digits option is ignored.

‘-n digits’
‘--digits=digits’

Use output file names containing numbers that are digits digits long instead of
the default 2.

‘-k’
‘--keep-files’

Do not remove output files when errors are encountered.

Chapter 5: Output of parts of files 39

‘--suppress-matched’
Do not output lines matching the specified pattern. I.e., suppress the boundary
line from the start of the second and subsequent splits.

‘-z’
‘--elide-empty-files’

Suppress the generation of zero-length output files. (In cases where the section
delimiters of the input file are supposed to mark the first lines of each of the
sections, the first output file will generally be a zero-length file unless you
use this option.) The output file sequence numbers always run consecutively
starting from 0, even when this option is specified.

‘-s’
‘-q’
‘--silent’
‘--quiet’ Do not print counts of output file sizes.

An exit status of zero indicates success, and a nonzero value indicates failure.Here is an
example of its usage. First, create an empty directory for the exercise, and cd into it:

$ mkdir d && cd d

Now, split the sequence of 1..14 on lines that end with 0 or 5:

$ seq 14 | csplit - ’/[05]$/’ ’{*}’

8

10

15

Each number printed above is the size of an output file that csplit has just created. List
the names of those output files:

$ ls

xx00 xx01 xx02

Use head to show their contents:

$ head xx*

==> xx00 <==

1

2

3

4

==> xx01 <==

5

6

7

8

9

==> xx02 <==

10

11

40

12

13

14

Example of splitting input by empty lines:

$ csplit --suppress-matched input.txt ’/^$/’ ’{*}’

41

6 Summarizing files

These commands generate just a few numbers representing entire contents of files.

6.1 wc: Print newline, word, and byte counts

wc counts the number of bytes, characters, whitespace-separated words, and newlines in
each given file, or standard input if none are given or for a file of ‘-’. Synopsis:

wc [option]... [file]...

wc prints one line of counts for each file, and if the file was given as an argument, it
prints the file name following the counts. If more than one file is given, wc prints a final
line containing the cumulative counts, with the file name total. The counts are printed in
this order: newlines, words, characters, bytes, maximum line length. Each count is printed
right-justified in a field with at least one space between fields so that the numbers and file
names normally line up nicely in columns. The width of the count fields varies depending
on the inputs, so you should not depend on a particular field width. However, as a GNU
extension, if only one count is printed, it is guaranteed to be printed without leading spaces.

By default, wc prints three counts: the newline, words, and byte counts. Options can
specify that only certain counts be printed. Options do not undo others previously given,
so

wc --bytes --words

prints both the byte counts and the word counts.

With the --max-line-length option, wc prints the length of the longest line per file,
and if there is more than one file it prints the maximum (not the sum) of those lengths.
The line lengths here are measured in screen columns, according to the current locale and
assuming tab positions in every 8th column.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-c’
‘--bytes’ Print only the byte counts.

‘-m’
‘--chars’ Print only the character counts.

‘-w’
‘--words’ Print only the word counts.

‘-l’
‘--lines’ Print only the newline counts.

‘-L’
‘--max-line-length’

Print only the maximum display widths. Tabs are set at every 8th column.
Display widths of wide characters are considered. Non-printable characters are
given 0 width.

‘--files0-from=file’
Disallow processing files named on the command line, and instead process those
named in file file; each name being terminated by a zero byte (ASCII NUL). This

Chapter 6: Summarizing files 42

is useful when the list of file names is so long that it may exceed a command line
length limitation. In such cases, running wc via xargs is undesirable because
it splits the list into pieces and makes wc print a total for each sublist rather
than for the entire list. One way to produce a list of ASCII NUL terminated
file names is with GNU find, using its -print0 predicate. If file is ‘-’ then the
ASCII NUL terminated file names are read from standard input.

For example, to find the length of the longest line in any .c or .h file in the
current hierarchy, do this:

find . -name ’*.[ch]’ -print0 |

wc -L --files0-from=- | tail -n1

An exit status of zero indicates success, and a nonzero value indicates failure.

6.2 sum: Print checksum and block counts

sum computes a 16-bit checksum for each given file, or standard input if none are given or
for a file of ‘-’. Synopsis:

sum [option]... [file]...

sum prints the checksum for each file followed by the number of blocks in the file (rounded
up). If more than one file is given, file names are also printed (by default). (With the --sysv
option, corresponding file names are printed when there is at least one file argument.)

By default, GNU sum computes checksums using an algorithm compatible with BSD sum

and prints file sizes in units of 1024-byte blocks.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-r’ Use the default (BSD compatible) algorithm. This option is included for com-
patibility with the System V sum. Unless -s was also given, it has no effect.

‘-s’
‘--sysv’ Compute checksums using an algorithm compatible with System V sum’s de-

fault, and print file sizes in units of 512-byte blocks.

sum is provided for compatibility; the cksum program (see next section) is preferable in
new applications.

An exit status of zero indicates success, and a nonzero value indicates failure.

6.3 cksum: Print CRC checksum and byte counts

cksum computes a cyclic redundancy check (CRC) checksum for each given file, or standard
input if none are given or for a file of ‘-’. Synopsis:

cksum [option]... [file]...

cksum prints the CRC checksum for each file along with the number of bytes in the file,
and the file name unless no arguments were given.

cksum is typically used to ensure that files transferred by unreliable means (e.g., netnews)
have not been corrupted, by comparing the cksum output for the received files with the
cksum output for the original files (typically given in the distribution).

Chapter 6: Summarizing files 43

The CRC algorithm is specified by the POSIX standard. It is not compatible with the
BSD or System V sum algorithms (see the previous section); it is more robust.

The only options are --help and --version. See Chapter 2 [Common options], page 2.

An exit status of zero indicates success, and a nonzero value indicates failure.

6.4 b2sum: Print or check BLAKE2 digests

b2sum computes a 512-bit checksum for each specified file. The same usage and options
as the md5sum command are supported. See Section 6.5 [md5sum invocation], page 43. In
addition b2sum supports the following options.

‘-l’
‘--length’

Change (shorten) the default digest length. This is specified in bits and thus
must be a multiple of 8. This option is ignored when --check is specified, as
the length is automatically determined when checking.

6.5 md5sum: Print or check MD5 digests

md5sum computes a 128-bit checksum (or fingerprint or message-digest) for each specified
file.

Note: The MD5 digest is more reliable than a simple CRC (provided by the cksum

command) for detecting accidental file corruption, as the chances of accidentally having
two files with identical MD5 are vanishingly small. However, it should not be considered
secure against malicious tampering: although finding a file with a given MD5 fingerprint
is considered infeasible at the moment, it is known how to modify certain files, including
digital certificates, so that they appear valid when signed with an MD5 digest. For more
secure hashes, consider using SHA-2, or the newer b2sum command. See Section 6.7 [sha2
utilities], page 45. See Section 6.4 [b2sum invocation], page 43.

If a file is specified as ‘-’ or if no files are given md5sum computes the checksum for the
standard input. md5sum can also determine whether a file and checksum are consistent.
Synopsis:

md5sum [option]... [file]...

For each file, ‘md5sum’ outputs by default, the MD5 checksum, a space, a flag indicating
binary or text input mode, and the file name. Binary mode is indicated with ‘*’, text mode
with ‘ ’ (space). Binary mode is the default on systems where it’s significant, otherwise
text mode is the default. Without --zero, if file contains a backslash or newline, the line
is started with a backslash, and each problematic character in the file name is escaped with
a backslash, making the output unambiguous even in the presence of arbitrary file names.
If file is omitted or specified as ‘-’, standard input is read.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-b’
‘--binary’

Treat each input file as binary, by reading it in binary mode and outputting
a ‘*’ flag. This is the inverse of --text. On systems like GNU that do not

Chapter 6: Summarizing files 44

distinguish between binary and text files, this option merely flags each input
mode as binary: the MD5 checksum is unaffected. This option is the default
on systems like MS-DOS that distinguish between binary and text files, except
for reading standard input when standard input is a terminal.

‘-c’
‘--check’ Read file names and checksum information (not data) from each file (or from

stdin if no file was specified) and report whether the checksums match the
contents of the named files. The input to this mode of md5sum is usually the
output of a prior, checksum-generating run of ‘md5sum’. Three input formats
are supported. Either the default output format described above, the --tag

output format, or the BSD reversed mode format which is similar to the default
mode, but doesn’t use a character to distinguish binary and text modes. Output
with --zero enabled is not supported by --check.

For each such line, md5sum reads the named file and computes its MD5 check-
sum. Then, if the computed message digest does not match the one on the line
with the file name, the file is noted as having failed the test. Otherwise, the file
passes the test. By default, for each valid line, one line is written to standard
output indicating whether the named file passed the test. After all checks have
been performed, if there were any failures, a warning is issued to standard er-
ror. Use the --status option to inhibit that output. If any listed file cannot
be opened or read, if any valid line has an MD5 checksum inconsistent with the
associated file, or if no valid line is found, md5sum exits with nonzero status.
Otherwise, it exits successfully.

‘--ignore-missing’
This option is useful only when verifying checksums. When verifying checksums,
don’t fail or report any status for missing files. This is useful when verifying a
subset of downloaded files given a larger list of checksums.

‘--quiet’ This option is useful only when verifying checksums. When verifying checksums,
don’t generate an ’OK’ message per successfully checked file. Files that fail the
verification are reported in the default one-line-per-file format. If there is any
checksum mismatch, print a warning summarizing the failures to standard error.

‘--status’
This option is useful only when verifying checksums. When verifying check-
sums, don’t generate the default one-line-per-file diagnostic and don’t output
the warning summarizing any failures. Failures to open or read a file still evoke
individual diagnostics to standard error. If all listed files are readable and are
consistent with the associated MD5 checksums, exit successfully. Otherwise
exit with a status code indicating there was a failure.

‘--tag’ Output BSD style checksums, which indicate the checksum algorithm used. As
a GNU extension, if --zero is not used, file names with problematic characters
are escaped as described above, with the same escaping indicator of ‘\’ at the
start of the line, being used. The --tag option implies binary mode, and is dis-
allowed with --text mode as supporting that would unnecessarily complicate
the output format, while providing little benefit.

Chapter 6: Summarizing files 45

‘-t’
‘--text’ Treat each input file as text, by reading it in text mode and outputting a ‘ ’

flag. This is the inverse of --binary. This option is the default on systems like
GNU that do not distinguish between binary and text files. On other systems,
it is the default for reading standard input when standard input is a terminal.
This mode is never defaulted to if --tag is used.

‘-w’
‘--warn’ When verifying checksums, warn about improperly formatted MD5 checksum

lines. This option is useful only if all but a few lines in the checked input are
valid.

‘--strict’
When verifying checksums, if one or more input line is invalid, exit nonzero
after all warnings have been issued.

‘-z’
‘--zero’ Output a zero byte (ASCII NUL) at the end of each line, rather than a newline.

This option enables other programs to parse the output even when that output
would contain data with embedded newlines.Also file name escaping is not used.

An exit status of zero indicates success, and a nonzero value indicates failure.

6.6 sha1sum: Print or check SHA-1 digests

sha1sum computes a 160-bit checksum for each specified file. The usage and options of
this command are precisely the same as for md5sum. See Section 6.5 [md5sum invocation],
page 43.

Note: The SHA-1 digest is more reliable than a simple CRC (provided by the cksum

command) for detecting accidental file corruption, as the chances of accidentally having
two files with identical SHA-1 are vanishingly small. However, it should not be considered
secure against malicious tampering: although finding a file with a given SHA-1 fingerprint
is considered infeasible at the moment, it is known how to modify certain files, including
digital certificates, so that they appear valid when signed with an SHA-1 digest. For more
secure hashes, consider using SHA-2, or the newer b2sum command. See Section 6.7 [sha2
utilities], page 45. See Section 6.4 [b2sum invocation], page 43.

6.7 sha2 utilities: Print or check SHA-2 digests

The commands sha224sum, sha256sum, sha384sum and sha512sum compute checksums of
various lengths (respectively 224, 256, 384 and 512 bits), collectively known as the SHA-2
hashes. The usage and options of these commands are precisely the same as for md5sum and
sha1sum. See Section 6.5 [md5sum invocation], page 43.

46

7 Operating on sorted files

These commands work with (or produce) sorted files.

7.1 sort: Sort text files

sort sorts, merges, or compares all the lines from the given files, or standard input if
none are given or for a file of ‘-’. By default, sort writes the results to standard output.
Synopsis:

sort [option]... [file]...

Many options affect how sort compares lines; if the results are unexpected, try the
--debug option to see what happened. A pair of lines is compared as follows: sort compares
each pair of fields (see --key), in the order specified on the command line, according to the
associated ordering options, until a difference is found or no fields are left. If no key fields
are specified, sort uses a default key of the entire line. Finally, as a last resort when all keys
compare equal, sort compares entire lines as if no ordering options other than --reverse

(-r) were specified. The --stable (-s) option disables this last-resort comparison so that
lines in which all fields compare equal are left in their original relative order. The --unique
(-u) option also disables the last-resort comparison.

Unless otherwise specified, all comparisons use the character collating sequence specified
by the LC_COLLATE locale.1 A line’s trailing newline is not part of the line for comparison
purposes. If the final byte of an input file is not a newline, GNU sort silently supplies
one. GNU sort (as specified for all GNU utilities) has no limit on input line length or
restrictions on bytes allowed within lines.

sort has three modes of operation: sort (the default), merge, and check for sortedness.
The following options change the operation mode:

‘-c’
‘--check’
‘--check=diagnose-first’

Check whether the given file is already sorted: if it is not all sorted, print a
diagnostic containing the first out-of-order line and exit with a status of 1.
Otherwise, exit successfully. At most one input file can be given.

‘-C’
‘--check=quiet’
‘--check=silent’

Exit successfully if the given file is already sorted, and exit with status 1 oth-
erwise. At most one input file can be given. This is like -c, except it does not
print a diagnostic.

1 If you use a non-POSIX locale (e.g., by setting LC_ALL to ‘en_US’), then sort may produce output that
is sorted differently than you’re accustomed to. In that case, set the LC_ALL environment variable to ‘C’.
Note that setting only LC_COLLATE has two problems. First, it is ineffective if LC_ALL is also set. Second,
it has undefined behavior if LC_CTYPE (or LANG, if LC_CTYPE is unset) is set to an incompatible value. For
example, you get undefined behavior if LC_CTYPE is ja_JP.PCK but LC_COLLATE is en_US.UTF-8.

Chapter 7: Operating on sorted files 47

‘-m’
‘--merge’ Merge the given files by sorting them as a group. Each input file must always

be individually sorted. It always works to sort instead of merge; merging is
provided because it is faster, in the case where it works.

Exit status:

0 if no error occurred
1 if invoked with -c or -C and the input is not sorted
2 if an error occurred

If the environment variable TMPDIR is set, sort uses its value as the directory for tempo-
rary files instead of /tmp. The --temporary-directory (-T) option in turn overrides the
environment variable.

The following options affect the ordering of output lines. They may be specified globally
or as part of a specific key field. If no key fields are specified, global options apply to
comparison of entire lines; otherwise the global options are inherited by key fields that do
not specify any special options of their own. In pre-POSIX versions of sort, global options
affect only later key fields, so portable shell scripts should specify global options first.

‘-b’
‘--ignore-leading-blanks’

Ignore leading blanks when finding sort keys in each line. By default a blank
is a space or a tab, but the LC_CTYPE locale can change this. Note blanks may
be ignored by your locale’s collating rules, but without this option they will be
significant for character positions specified in keys with the -k option.

‘-d’
‘--dictionary-order’

Sort in phone directory order: ignore all characters except letters, digits and
blanks when sorting. By default letters and digits are those of ASCII and a
blank is a space or a tab, but the LC_CTYPE locale can change this.

‘-f’
‘--ignore-case’

Fold lowercase characters into the equivalent uppercase characters when com-
paring so that, for example, ‘b’ and ‘B’ sort as equal. The LC_CTYPE locale
determines character types. When used with --unique those lower case equiv-
alent lines are thrown away. (There is currently no way to throw away the
upper case equivalent instead. (Any --reverse given would only affect the
final result, after the throwing away.))

‘-g’
‘--general-numeric-sort’
‘--sort=general-numeric’

Sort numerically, converting a prefix of each line to a long double-precision
floating point number. See Section 2.4 [Floating point], page 5. Do not report
overflow, underflow, or conversion errors. Use the following collating sequence:

• Lines that do not start with numbers (all considered to be equal).

• NaNs (“Not a Number” values, in IEEE floating point arithmetic) in a
consistent but machine-dependent order.

Chapter 7: Operating on sorted files 48

• Minus infinity.

• Finite numbers in ascending numeric order (with −0 and +0 equal).

• Plus infinity.

Use this option only if there is no alternative; it is much slower than
--numeric-sort (-n) and it can lose information when converting to floating
point.

‘-h’
‘--human-numeric-sort’
‘--sort=human-numeric’

Sort numerically, first by numeric sign (negative, zero, or positive); then by
SI suffix (either empty, or ‘k’ or ‘K’, or one of ‘MGTPEZY’, in that order; see
Section 2.3 [Block size], page 3); and finally by numeric value. For example,
‘1023M’ sorts before ‘1G’ because ‘M’ (mega) precedes ‘G’ (giga) as an SI suffix.
This option sorts values that are consistently scaled to the nearest suffix, regard-
less of whether suffixes denote powers of 1000 or 1024, and it therefore sorts the
output of any single invocation of the df, du, or ls commands that are invoked
with their --human-readable or --si options. The syntax for numbers is the
same as for the --numeric-sort option; the SI suffix must immediately follow
the number. Note also the numfmt command, which can be used to reformat
numbers to human format after the sort, thus often allowing sort to operate on
more accurate numbers.

‘-i’
‘--ignore-nonprinting’

Ignore nonprinting characters. The LC_CTYPE locale determines character types.
This option has no effect if the stronger --dictionary-order (-d) option is
also given.

‘-M’
‘--month-sort’
‘--sort=month’

An initial string, consisting of any amount of blanks, followed by a month name
abbreviation, is folded to UPPER case and compared in the order ‘JAN’ < ‘FEB’
< . . . < ‘DEC’. Invalid names compare low to valid names. The LC_TIME locale
category determines the month spellings. By default a blank is a space or a
tab, but the LC_CTYPE locale can change this.

‘-n’
‘--numeric-sort’
‘--sort=numeric’

Sort numerically. The number begins each line and consists of optional blanks,
an optional ‘-’ sign, and zero or more digits possibly separated by thousands
separators, optionally followed by a decimal-point character and zero or more
digits. An empty number is treated as ‘0’. The LC_NUMERIC locale specifies the
decimal-point character and thousands separator. By default a blank is a space
or a tab, but the LC_CTYPE locale can change this.

Comparison is exact; there is no rounding error.

Chapter 7: Operating on sorted files 49

Neither a leading ‘+’ nor exponential notation is recognized. To compare such
strings numerically, use the --general-numeric-sort (-g) option.

‘-V’
‘--version-sort’

Sort by version name and number. It behaves like a standard sort, except
that each sequence of decimal digits is treated numerically as an index/version
number. (See Chapter 30 [Version sort ordering], page 243.)

‘-r’
‘--reverse’

Reverse the result of comparison, so that lines with greater key values appear
earlier in the output instead of later.

‘-R’
‘--random-sort’
‘--sort=random’

Sort by hashing the input keys and then sorting the hash values. Choose the
hash function at random, ensuring that it is free of collisions so that differing
keys have differing hash values. This is like a random permutation of the inputs
(see Section 7.2 [shuf invocation], page 54), except that keys with the same value
sort together.

If multiple random sort fields are specified, the same random hash function is
used for all fields. To use different random hash functions for different fields,
you can invoke sort more than once.

The choice of hash function is affected by the --random-source option.

Other options are:

‘--compress-program=prog’
Compress any temporary files with the program prog.

With no arguments, prog must compress standard input to standard output,
and when given the -d option it must decompress standard input to standard
output.

Terminate with an error if prog exits with nonzero status.

White space and the backslash character should not appear in prog ; they are
reserved for future use.

‘--files0-from=file’
Disallow processing files named on the command line, and instead process those
named in file file; each name being terminated by a zero byte (ASCII NUL). This
is useful when the list of file names is so long that it may exceed a command
line length limitation. In such cases, running sort via xargs is undesirable
because it splits the list into pieces and makes sort print sorted output for
each sublist rather than for the entire list. One way to produce a list of ASCII
NUL terminated file names is with GNU find, using its -print0 predicate. If
file is ‘-’ then the ASCII NUL terminated file names are read from standard
input.

Chapter 7: Operating on sorted files 50

‘-k pos1[,pos2]’
‘--key=pos1[,pos2]’

Specify a sort field that consists of the part of the line between pos1 and pos2
(or the end of the line, if pos2 is omitted), inclusive.

In its simplest form pos specifies a field number (starting with 1), with fields
being separated by runs of blank characters, and by default those blanks being
included in the comparison at the start of each field. To adjust the handling of
blank characters see the -b and -t options.

More generally, each pos has the form ‘f[.c][opts]’, where f is the number of
the field to use, and c is the number of the first character from the beginning
of the field. Fields and character positions are numbered starting with 1; a
character position of zero in pos2 indicates the field’s last character. If ‘.c’ is
omitted from pos1, it defaults to 1 (the beginning of the field); if omitted from
pos2, it defaults to 0 (the end of the field). opts are ordering options, allowing
individual keys to be sorted according to different rules; see below for details.
Keys can span multiple fields.

Example: To sort on the second field, use --key=2,2 (-k 2,2). See below for
more notes on keys and more examples. See also the --debug option to help
determine the part of the line being used in the sort.

‘--debug’ Highlight the portion of each line used for sorting. Also issue warnings about
questionable usage to stderr.

‘--batch-size=nmerge’
Merge at most nmerge inputs at once.

When sort has to merge more than nmerge inputs, it merges them in groups
of nmerge, saving the result in a temporary file, which is then used as an input
in a subsequent merge.

A large value of nmerge may improve merge performance and decrease tem-
porary storage utilization at the expense of increased memory usage and I/O.
Conversely a small value of nmerge may reduce memory requirements and I/O
at the expense of temporary storage consumption and merge performance.

The value of nmerge must be at least 2. The default value is currently 16, but
this is implementation-dependent and may change in the future.

The value of nmerge may be bounded by a resource limit for open file descrip-
tors. The commands ‘ulimit -n’ or ‘getconf OPEN_MAX’ may display limits for
your systems; these limits may be modified further if your program already has
some files open, or if the operating system has other limits on the number of
open files. If the value of nmerge exceeds the resource limit, sort silently uses
a smaller value.

‘-o output-file’
‘--output=output-file’

Write output to output-file instead of standard output. Normally, sort reads
all input before opening output-file, so you can sort a file in place by using
commands like sort -o F F and cat F | sort -o F. However, it is often safer
to output to an otherwise-unused file, as data may be lost if the system crashes

Chapter 7: Operating on sorted files 51

or sort encounters an I/O or other serious error while a file is being sorted in
place. Also, sort with --merge (-m) can open the output file before reading all
input, so a command like cat F | sort -m -o F - G is not safe as sort might
start writing F before cat is done reading it.

On newer systems, -o cannot appear after an input file if POSIXLY_CORRECT is
set, e.g., ‘sort F -o F’. Portable scripts should specify -o output-file before
any input files.

‘--random-source=file’
Use file as a source of random data used to determine which random hash
function to use with the -R option. See Section 2.7 [Random sources], page 8.

‘-s’
‘--stable’

Make sort stable by disabling its last-resort comparison. This option has no
effect if no fields or global ordering options other than --reverse (-r) are
specified.

‘-S size’
‘--buffer-size=size’

Use a main-memory sort buffer of the given size. By default, size is in units
of 1024 bytes. Appending ‘%’ causes size to be interpreted as a percentage of
physical memory. Appending ‘K’ multiplies size by 1024 (the default), ‘M’ by
1,048,576, ‘G’ by 1,073,741,824, and so on for ‘T’, ‘P’, ‘E’, ‘Z’, and ‘Y’. Appending
‘b’ causes size to be interpreted as a byte count, with no multiplication.

This option can improve the performance of sort by causing it to start with a
larger or smaller sort buffer than the default. However, this option affects only
the initial buffer size. The buffer grows beyond size if sort encounters input
lines larger than size.

‘-t separator’
‘--field-separator=separator’

Use character separator as the field separator when finding the sort keys in each
line. By default, fields are separated by the empty string between a non-blank
character and a blank character. By default a blank is a space or a tab, but
the LC_CTYPE locale can change this.

That is, given the input line ‘ foo bar’, sort breaks it into fields ‘ foo’ and
‘ bar’. The field separator is not considered to be part of either the field pre-
ceding or the field following, so with ‘sort -t " "’ the same input line has three
fields: an empty field, ‘foo’, and ‘bar’. However, fields that extend to the end
of the line, as -k 2, or fields consisting of a range, as -k 2,3, retain the field
separators present between the endpoints of the range.

To specify ASCII NUL as the field separator, use the two-character string ‘\0’,
e.g., ‘sort -t ’\0’’.

‘-T tempdir’
‘--temporary-directory=tempdir’

Use directory tempdir to store temporary files, overriding the TMPDIR environ-
ment variable. If this option is given more than once, temporary files are stored

Chapter 7: Operating on sorted files 52

in all the directories given. If you have a large sort or merge that is I/O-bound,
you can often improve performance by using this option to specify directories
on different disks and controllers.

‘--parallel=n’
Set the number of sorts run in parallel to n. By default, n is set to the number
of available processors, but limited to 8, as there are diminishing performance
gains after that. Note also that using n threads increases the memory usage by
a factor of log n. Also see Section 21.3 [nproc invocation], page 195.

‘-u’
‘--unique’

Normally, output only the first of a sequence of lines that compare equal. For
the --check (-c or -C) option, check that no pair of consecutive lines compares
equal.

This option also disables the default last-resort comparison.

The commands sort -u and sort | uniq are equivalent, but this equivalence
does not extend to arbitrary sort options. For example, sort -n -u inspects
only the value of the initial numeric string when checking for uniqueness,
whereas sort -n | uniq inspects the entire line. See Section 7.3 [uniq invo-
cation], page 56.

‘-z’
‘--zero-terminated’

Delimit items with a zero byte rather than a newline (ASCII LF). I.e., treat
input as items separated by ASCII NUL and terminate output items with ASCII
NUL. This option can be useful in conjunction with ‘perl -0’ or ‘find -print0’
and ‘xargs -0’ which do the same in order to reliably handle arbitrary file names
(even those containing blanks or other special characters).

Historical (BSD and System V) implementations of sort have differed in their interpre-
tation of some options, particularly -b, -f, and -n. GNU sort follows the POSIX behavior,
which is usually (but not always!) like the System V behavior. According to POSIX, -n no
longer implies -b. For consistency, -M has been changed in the same way. This may affect
the meaning of character positions in field specifications in obscure cases. The only fix is
to add an explicit -b.

A position in a sort field specified with -k may have any of the option letters
‘MbdfghinRrV’ appended to it, in which case no global ordering options are inherited by
that particular field. The -b option may be independently attached to either or both of
the start and end positions of a field specification, and if it is inherited from the global
options it will be attached to both. If input lines can contain leading or adjacent blanks
and -t is not used, then -k is typically combined with -b or an option that implicitly
ignores leading blanks (‘Mghn’) as otherwise the varying numbers of leading blanks in fields
can cause confusing results.

If the start position in a sort field specifier falls after the end of the line or after the end
field, the field is empty. If the -b option was specified, the ‘.c’ part of a field specification
is counted from the first nonblank character of the field.

On systems not conforming to POSIX 1003.1-2001, sort supports a traditional origin-
zero syntax ‘+pos1 [-pos2]’ for specifying sort keys. The traditional command ‘sort +a.x

Chapter 7: Operating on sorted files 53

-b.y’ is equivalent to ‘sort -k a+1.x+1,b’ if y is ‘0’ or absent, otherwise it is equivalent
to ‘sort -k a+1.x+1,b+1.y’.

This traditional behavior can be controlled with the _POSIX2_VERSION environment
variable (see Section 2.13 [Standards conformance], page 11); it can also be enabled when
POSIXLY_CORRECT is not set by using the traditional syntax with ‘-pos2’ present.

Scripts intended for use on standard hosts should avoid traditional syntax and should
use -k instead. For example, avoid ‘sort +2’, since it might be interpreted as either ‘sort
./+2’ or ‘sort -k 3’. If your script must also run on hosts that support only the traditional
syntax, it can use a test like ‘if sort -k 1 </dev/null >/dev/null 2>&1; then ...’ to
decide which syntax to use.

Here are some examples to illustrate various combinations of options.

• Sort in descending (reverse) numeric order.

sort -n -r

• Run no more than 4 sorts concurrently, using a buffer size of 10M.

sort --parallel=4 -S 10M

• Sort alphabetically, omitting the first and second fields and the blanks at the start of
the third field. This uses a single key composed of the characters beginning at the start
of the first nonblank character in field three and extending to the end of each line.

sort -k 3b

• Sort numerically on the second field and resolve ties by sorting alphabetically on the
third and fourth characters of field five. Use ‘:’ as the field delimiter.

sort -t : -k 2,2n -k 5.3,5.4

Note that if you had written -k 2n instead of -k 2,2n sort would have used all char-
acters beginning in the second field and extending to the end of the line as the primary
numeric key. For the large majority of applications, treating keys spanning more than
one field as numeric will not do what you expect.

Also note that the ‘n’ modifier was applied to the field-end specifier for the first key.
It would have been equivalent to specify -k 2n,2 or -k 2n,2n. All modifiers except ‘b’
apply to the associated field, regardless of whether the modifier character is attached
to the field-start and/or the field-end part of the key specifier.

• Sort the password file on the fifth field and ignore any leading blanks. Sort lines with
equal values in field five on the numeric user ID in field three. Fields are separated by
‘:’.

sort -t : -k 5b,5 -k 3,3n /etc/passwd

sort -t : -n -k 5b,5 -k 3,3 /etc/passwd

sort -t : -b -k 5,5 -k 3,3n /etc/passwd

These three commands have equivalent effect. The first specifies that the first key’s
start position ignores leading blanks and the second key is sorted numerically. The other
two commands rely on global options being inherited by sort keys that lack modifiers.
The inheritance works in this case because -k 5b,5b and -k 5b,5 are equivalent, as
the location of a field-end lacking a ‘.c’ character position is not affected by whether
initial blanks are skipped.

Chapter 7: Operating on sorted files 54

• Sort a set of log files, primarily by IPv4 address and secondarily by timestamp. If two
lines’ primary and secondary keys are identical, output the lines in the same order that
they were input. The log files contain lines that look like this:

4.150.156.3 - - [01/Apr/2004:06:31:51 +0000] message 1

211.24.3.231 - - [24/Apr/2004:20:17:39 +0000] message 2

Fields are separated by exactly one space. Sort IPv4 addresses lexicographically, e.g.,
212.61.52.2 sorts before 212.129.233.201 because 61 is less than 129.

sort -s -t ’ ’ -k 4.9n -k 4.5M -k 4.2n -k 4.14,4.21 file*.log |

sort -s -t ’.’ -k 1,1n -k 2,2n -k 3,3n -k 4,4n

This example cannot be done with a single sort invocation, since IPv4 address compo-
nents are separated by ‘.’ while dates come just after a space. So it is broken down into
two invocations of sort: the first sorts by timestamp and the second by IPv4 address.
The timestamp is sorted by year, then month, then day, and finally by hour-minute-
second field, using -k to isolate each field. Except for hour-minute-second there’s no
need to specify the end of each key field, since the ‘n’ and ‘M’ modifiers sort based
on leading prefixes that cannot cross field boundaries. The IPv4 addresses are sorted
lexicographically. The second sort uses ‘-s’ so that ties in the primary key are broken
by the secondary key; the first sort uses ‘-s’ so that the combination of the two sorts
is stable.

• Generate a tags file in case-insensitive sorted order.

find src -type f -print0 | sort -z -f | xargs -0 etags --append

The use of -print0, -z, and -0 in this case means that file names that contain blanks
or other special characters are not broken up by the sort operation.

• Use the common DSU, Decorate Sort Undecorate idiom to sort lines according to their
length.

awk ’{print length, $0}’ /etc/passwd | sort -n | cut -f2- -d’ ’

In general this technique can be used to sort data that the sort command does not
support, or is inefficient at, sorting directly.

• Shuffle a list of directories, but preserve the order of files within each directory. For
instance, one could use this to generate a music playlist in which albums are shuffled
but the songs of each album are played in order.

ls */* | sort -t / -k 1,1R -k 2,2

7.2 shuf: Shuffling text

shuf shuffles its input by outputting a random permutation of its input lines. Each output
permutation is equally likely. Synopses:

shuf [option]... [file]

shuf -e [option]... [arg]...

shuf -i lo-hi [option]...

shuf has three modes of operation that affect where it obtains its input lines. By default,
it reads lines from standard input. The following options change the operation mode:

‘-e’
‘--echo’ Treat each command-line operand as an input line.

Chapter 7: Operating on sorted files 55

‘-i lo-hi’
‘--input-range=lo-hi’

Act as if input came from a file containing the range of unsigned decimal integers
lo . . .hi, one per line.

shuf’s other options can affect its behavior in all operation modes:

‘-n count’
‘--head-count=count’

Output at most count lines. By default, all input lines are output.

‘-o output-file’
‘--output=output-file’

Write output to output-file instead of standard output. shuf reads all input
before opening output-file, so you can safely shuffle a file in place by using
commands like shuf -o F <F and cat F | shuf -o F.

‘--random-source=file’
Use file as a source of random data used to determine which permutation to
generate. See Section 2.7 [Random sources], page 8.

‘-r’
‘--repeat’

Repeat output values, that is, select with replacement. With this option the
output is not a permutation of the input; instead, each output line is ran-
domly chosen from all the inputs. This option is typically combined with
--head-count; if --head-count is not given, shuf repeats indefinitely.

‘-z’
‘--zero-terminated’

Delimit items with a zero byte rather than a newline (ASCII LF). I.e., treat
input as items separated by ASCII NUL and terminate output items with ASCII
NUL. This option can be useful in conjunction with ‘perl -0’ or ‘find -print0’
and ‘xargs -0’ which do the same in order to reliably handle arbitrary file names
(even those containing blanks or other special characters).

For example:

shuf <<EOF

A man,

a plan,

a canal:

Panama!

EOF

might produce the output

Panama!

A man,

a canal:

a plan,

Similarly, the command:

shuf -e clubs hearts diamonds spades

Chapter 7: Operating on sorted files 56

might output:

clubs

diamonds

spades

hearts

and the command ‘shuf -i 1-4’ might output:

4

2

1

3

The above examples all have four input lines, so shuf might produce any of the twenty-four
possible permutations of the input. In general, if there are n input lines, there are n! (i.e.,
n factorial, or n * (n - 1) * . . . * 1) possible output permutations.

To output 50 random numbers each in the range 0 through 9, use:

shuf -r -n 50 -i 0-9

To simulate 100 coin flips, use:

shuf -r -n 100 -e Head Tail

An exit status of zero indicates success, and a nonzero value indicates failure.

7.3 uniq: Uniquify files

uniq writes the unique lines in the given input, or standard input if nothing is given or for
an input name of ‘-’. Synopsis:

uniq [option]... [input [output]]

By default, uniq prints its input lines, except that it discards all but the first of adjacent
repeated lines, so that no output lines are repeated. Optionally, it can instead discard lines
that are not repeated, or all repeated lines.

The input need not be sorted, but repeated input lines are detected only if they are
adjacent. If you want to discard non-adjacent duplicate lines, perhaps you want to use
sort -u. See Section 7.1 [sort invocation], page 46.

Comparisons honor the rules specified by the LC_COLLATE locale category.

If no output file is specified, uniq writes to standard output.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-f n’
‘--skip-fields=n’

Skip n fields on each line before checking for uniqueness. Use a null string for
comparison if a line has fewer than n fields. Fields are sequences of non-space
non-tab characters that are separated from each other by at least one space or
tab.

For compatibility uniq supports a traditional option syntax -n. New scripts
should use -f n instead.

Chapter 7: Operating on sorted files 57

‘-s n’
‘--skip-chars=n’

Skip n characters before checking for uniqueness. Use a null string for compari-
son if a line has fewer than n characters. If you use both the field and character
skipping options, fields are skipped over first.

On systems not conforming to POSIX 1003.1-2001, uniq supports a traditional
option syntax +n. Although this traditional behavior can be controlled with
the _POSIX2_VERSION environment variable (see Section 2.13 [Standards con-
formance], page 11), portable scripts should avoid commands whose behavior
depends on this variable. For example, use ‘uniq ./+10’ or ‘uniq -s 10’ rather
than the ambiguous ‘uniq +10’.

‘-c’
‘--count’ Print the number of times each line occurred along with the line.

‘-i’
‘--ignore-case’

Ignore differences in case when comparing lines.

‘-d’
‘--repeated’

Discard lines that are not repeated. When used by itself, this option causes
uniq to print the first copy of each repeated line, and nothing else.

‘-D’
‘--all-repeated[=delimit-method]’

Do not discard the second and subsequent repeated input lines, but discard lines
that are not repeated. This option is useful mainly in conjunction with other
options e.g., to ignore case or to compare only selected fields. The optional
delimit-method, supported with the long form option, specifies how to delimit
groups of repeated lines, and must be one of the following:

‘none’ Do not delimit groups of repeated lines. This is equivalent to
--all-repeated (-D).

‘prepend’ Output a newline before each group of repeated lines. With
--zero-terminated (-z), use a zero byte (ASCII NUL) instead
of a newline as the delimiter.

‘separate’
Separate groups of repeated lines with a single newline. This is the
same as using ‘prepend’, except that no delimiter is inserted before
the first group, and hence may be better suited for output direct
to users. With --zero-terminated (-z), use a zero byte (ASCII
NUL) instead of a newline as the delimiter.

Note that when groups are delimited and the input stream contains blank lines,
then the output is ambiguous. To avoid that, filter the input through ‘tr -s

’\n’’ to remove blank lines.This is a GNU extension.

‘--group[=delimit-method]’
Output all lines, and delimit each unique group. With --zero-terminated

(-z), use a zero byte (ASCII NUL) instead of a newline as the delimiter.The

Chapter 7: Operating on sorted files 58

optional delimit-method specifies how to delimit groups, and must be one of
the following:

‘separate’
Separate unique groups with a single delimiter. This is the default
delimiting method if none is specified, and better suited for output
direct to users.

‘prepend’ Output a delimiter before each group of unique items.

‘append’ Output a delimiter after each group of unique items.

‘both’ Output a delimiter around each group of unique items.

Note that when groups are delimited and the input stream contains blank lines,
then the output is ambiguous. To avoid that, filter the input through ‘tr -s

’\n’’ to remove blank lines.This is a GNU extension.

‘-u’
‘--unique’

Discard the last line that would be output for a repeated input group. When
used by itself, this option causes uniq to print unique lines, and nothing else.

‘-w n’
‘--check-chars=n’

Compare at most n characters on each line (after skipping any specified fields
and characters). By default the entire rest of the lines are compared.

‘-z’
‘--zero-terminated’

Delimit items with a zero byte rather than a newline (ASCII LF). I.e., treat
input as items separated by ASCII NUL and terminate output items with ASCII
NUL. This option can be useful in conjunction with ‘perl -0’ or ‘find -print0’
and ‘xargs -0’ which do the same in order to reliably handle arbitrary file
names (even those containing blanks or other special characters).Note with -z

the newline character is treated as a field separator.

An exit status of zero indicates success, and a nonzero value indicates failure.

7.4 comm: Compare two sorted files line by line

comm writes to standard output lines that are common, and lines that are unique, to two
input files; a file name of ‘-’ means standard input. Synopsis:

comm [option]... file1 file2

Before comm can be used, the input files must be sorted using the collating sequence
specified by the LC_COLLATE locale. If an input file ends in a non-newline character, a
newline is silently appended. The sort command with no options always outputs a file
that is suitable input to comm.

With no options, comm produces three-column output. Column one contains lines unique
to file1, column two contains lines unique to file2, and column three contains lines common
to both files. Columns are separated by a single TAB character.

Chapter 7: Operating on sorted files 59

The options -1, -2, and -3 suppress printing of the corresponding columns (and sepa-
rators). Also see Chapter 2 [Common options], page 2.

Unlike some other comparison utilities, comm has an exit status that does not depend on
the result of the comparison. Upon normal completion comm produces an exit code of zero.
If there is an error it exits with nonzero status.

If the --check-order option is given, unsorted inputs will cause a fatal error message.
If the option --nocheck-order is given, unsorted inputs will never cause an error message.
If neither of these options is given, wrongly sorted inputs are diagnosed only if an input
file is found to contain unpairable lines. If an input file is diagnosed as being unsorted, the
comm command will exit with a nonzero status (and the output should not be used).

Forcing comm to process wrongly sorted input files containing unpairable lines by spec-
ifying --nocheck-order is not guaranteed to produce any particular output. The output
will probably not correspond with whatever you hoped it would be.

‘--check-order’
Fail with an error message if either input file is wrongly ordered.

‘--nocheck-order’
Do not check that both input files are in sorted order.

Other options are:

‘--output-delimiter=str’
Print str between adjacent output columns, rather than the default of a single
TAB character.

The delimiter str may not be empty.

‘--total’ Output a summary at the end.

Similar to the regular output, column one contains the total number of lines
unique to file1, column two contains the total number of lines unique to file2,
and column three contains the total number of lines common to both files,
followed by the word ‘total’ in the additional column four.

In the following example, comm omits the regular output (-123), thus just print-
ing the summary:

$ printf ’%s\n’ a b c d e > file1

$ printf ’%s\n’ b c d e f g > file2

$ comm --total -123 file1 file2

1 2 4 total

This option is a GNU extension. Portable scripts should use wc to get the
totals, e.g. for the above example files:

$ comm -23 file1 file2 | wc -l # number of lines only in file1

1

$ comm -13 file1 file2 | wc -l # number of lines only in file2

2

$ comm -12 file1 file2 | wc -l # number of lines common to both files

4

Chapter 7: Operating on sorted files 60

‘-z’
‘--zero-terminated’

Delimit items with a zero byte rather than a newline (ASCII LF). I.e., treat
input as items separated by ASCII NUL and terminate output items with ASCII
NUL. This option can be useful in conjunction with ‘perl -0’ or ‘find -print0’
and ‘xargs -0’ which do the same in order to reliably handle arbitrary file names
(even those containing blanks or other special characters).

7.5 ptx: Produce permuted indexes

ptx reads a text file and essentially produces a permuted index, with each keyword in its
context. The calling sketch is either one of:

ptx [option ...] [file ...]

ptx -G [option ...] [input [output]]

The -G (or its equivalent: --traditional) option disables all GNU extensions and
reverts to traditional mode, thus introducing some limitations and changing several of the
program’s default option values. When -G is not specified, GNU extensions are always
enabled. GNU extensions to ptx are documented wherever appropriate in this document.
See Section 7.5.5 [Compatibility in ptx], page 65, for the full list.

Individual options are explained in the following sections.

When GNU extensions are enabled, there may be zero, one or several files after the
options. If there is no file, the program reads the standard input. If there is one or several
files, they give the name of input files which are all read in turn, as if all the input files
were concatenated. However, there is a full contextual break between each file and, when
automatic referencing is requested, file names and line numbers refer to individual text
input files. In all cases, the program outputs the permuted index to the standard output.

When GNU extensions are not enabled, that is, when the program operates in traditional
mode, there may be zero, one or two parameters besides the options. If there are no
parameters, the program reads the standard input and outputs the permuted index to the
standard output. If there is only one parameter, it names the text input to be read instead
of the standard input. If two parameters are given, they give respectively the name of the
input file to read and the name of the output file to produce. Be very careful to note that,
in this case, the contents of file given by the second parameter is destroyed. This behavior
is dictated by System V ptx compatibility; GNU Standards normally discourage output
parameters not introduced by an option.

Note that for any file named as the value of an option or as an input text file, a single
dash ‘-’ may be used, in which case standard input is assumed. However, it would not make
sense to use this convention more than once per program invocation.

7.5.1 General options

‘-G’
‘--traditional’

As already explained, this option disables all GNU extensions to ptx and
switches to traditional mode.

‘--help’ Print a short help on standard output, then exit without further processing.

Chapter 7: Operating on sorted files 61

‘--version’
Print the program version on standard output, then exit without further pro-
cessing.

An exit status of zero indicates success, and a nonzero value indicates failure.

7.5.2 Charset selection

As it is set up now, the program assumes that the input file is coded using 8-bit ISO 8859-1
code, also known as Latin-1 character set, unless it is compiled for MS-DOS, in which case it
uses the character set of the IBM-PC. (GNU ptx is not known to work on smaller MS-DOS
machines anymore.) Compared to 7-bit ASCII, the set of characters which are letters is
different; this alters the behavior of regular expression matching. Thus, the default regular
expression for a keyword allows foreign or diacriticized letters. Keyword sorting, however,
is still crude; it obeys the underlying character set ordering quite blindly.

‘-f’
‘--ignore-case’

Fold lower case letters to upper case for sorting.

7.5.3 Word selection and input processing

‘-b file’
‘--break-file=file’

This option provides an alternative (to -W) method of describing which char-
acters make up words. It introduces the name of a file which contains a list of
characters which cannot be part of one word; this file is called the Break file.
Any character which is not part of the Break file is a word constituent. If both
options -b and -W are specified, then -W has precedence and -b is ignored.

When GNU extensions are enabled, the only way to avoid newline as a break
character is to write all the break characters in the file with no newline at all,
not even at the end of the file. When GNU extensions are disabled, spaces, tabs
and newlines are always considered as break characters even if not included in
the Break file.

‘-i file’
‘--ignore-file=file’

The file associated with this option contains a list of words which will never be
taken as keywords in concordance output. It is called the Ignore file. The file
contains exactly one word in each line; the end of line separation of words is
not subject to the value of the -S option.

‘-o file’
‘--only-file=file’

The file associated with this option contains a list of words which will be retained
in concordance output; any word not mentioned in this file is ignored. The file
is called the Only file. The file contains exactly one word in each line; the end
of line separation of words is not subject to the value of the -S option.

There is no default for the Only file. When both an Only file and an Ignore file
are specified, a word is considered a keyword only if it is listed in the Only file
and not in the Ignore file.

Chapter 7: Operating on sorted files 62

‘-r’
‘--references’

On each input line, the leading sequence of non-white space characters will be
taken to be a reference that has the purpose of identifying this input line in
the resulting permuted index. See Section 7.5.4 [Output formatting in ptx],
page 63, for more information about reference production. Using this option
changes the default value for option -S.

Using this option, the program does not try very hard to remove references
from contexts in output, but it succeeds in doing so when the context ends
exactly at the newline. If option -r is used with -S default value, or when
GNU extensions are disabled, this condition is always met and references are
completely excluded from the output contexts.

‘-S regexp’
‘--sentence-regexp=regexp’

This option selects which regular expression will describe the end of a line or
the end of a sentence. In fact, this regular expression is not the only distinction
between end of lines or end of sentences, and input line boundaries have no
special significance outside this option. By default, when GNU extensions are
enabled and if -r option is not used, end of sentences are used. In this case,
this regex is imported from GNU Emacs:

[.?!][]\"’)}]*\\($\\|\t\\| \\)[\t\n]*

Whenever GNU extensions are disabled or if -r option is used, end of lines are
used; in this case, the default regexp is just:

\n

Using an empty regexp is equivalent to completely disabling end of line or end of
sentence recognition. In this case, the whole file is considered to be a single big
line or sentence. The user might want to disallow all truncation flag generation
as well, through option -F "". See Section “Syntax of Regular Expressions” in
The GNU Emacs Manual.

When the keywords happen to be near the beginning of the input line or sen-
tence, this often creates an unused area at the beginning of the output context
line; when the keywords happen to be near the end of the input line or sentence,
this often creates an unused area at the end of the output context line. The
program tries to fill those unused areas by wrapping around context in them;
the tail of the input line or sentence is used to fill the unused area on the left of
the output line; the head of the input line or sentence is used to fill the unused
area on the right of the output line.

As a matter of convenience to the user, many usual backslashed escape se-
quences from the C language are recognized and converted to the corresponding
characters by ptx itself.

‘-W regexp’
‘--word-regexp=regexp’

This option selects which regular expression will describe each keyword. By
default, if GNU extensions are enabled, a word is a sequence of letters; the
regexp used is ‘\w+’. When GNU extensions are disabled, a word is by default

Chapter 7: Operating on sorted files 63

anything which ends with a space, a tab or a newline; the regexp used is ‘[^
\t\n]+’.

An empty regexp is equivalent to not using this option. See Section “Syntax of
Regular Expressions” in The GNU Emacs Manual.

As a matter of convenience to the user, many usual backslashed escape se-
quences, as found in the C language, are recognized and converted to the cor-
responding characters by ptx itself.

7.5.4 Output formatting

Output format is mainly controlled by the -O and -T options described in the table below.
When neither -O nor -T are selected, and if GNU extensions are enabled, the program
chooses an output format suitable for a dumb terminal. Each keyword occurrence is output
to the center of one line, surrounded by its left and right contexts. Each field is properly
justified, so the concordance output can be readily observed. As a special feature, if auto-
matic references are selected by option -A and are output before the left context, that is,
if option -R is not selected, then a colon is added after the reference; this nicely interfaces
with GNU Emacs next-error processing. In this default output format, each white space
character, like newline and tab, is merely changed to exactly one space, with no special
attempt to compress consecutive spaces. This might change in the future. Except for those
white space characters, every other character of the underlying set of 256 characters is
transmitted verbatim.

Output format is further controlled by the following options.

‘-g number’
‘--gap-size=number’

Select the size of the minimum white space gap between the fields on the output
line.

‘-w number’
‘--width=number’

Select the maximum output width of each final line. If references are used, they
are included or excluded from the maximum output width depending on the
value of option -R. If this option is not selected, that is, when references are
output before the left context, the maximum output width takes into account
the maximum length of all references. If this option is selected, that is, when
references are output after the right context, the maximum output width does
not take into account the space taken by references, nor the gap that precedes
them.

‘-A’
‘--auto-reference’

Select automatic references. Each input line will have an automatic reference
made up of the file name and the line ordinal, with a single colon between them.
However, the file name will be empty when standard input is being read. If both
-A and -r are selected, then the input reference is still read and skipped, but
the automatic reference is used at output time, overriding the input reference.

Chapter 7: Operating on sorted files 64

‘-R’
‘--right-side-refs’

In the default output format, when option -R is not used, any references pro-
duced by the effect of options -r or -A are placed to the far right of output
lines, after the right context. With default output format, when the -R option
is specified, references are rather placed at the beginning of each output line,
before the left context. For any other output format, option -R is ignored, with
one exception: with -R the width of references is not taken into account in total
output width given by -w.

This option is automatically selected whenever GNU extensions are disabled.

‘-F string’
‘--flag-truncation=string’

This option will request that any truncation in the output be reported using
the string string. Most output fields theoretically extend towards the beginning
or the end of the current line, or current sentence, as selected with option -S.
But there is a maximum allowed output line width, changeable through option
-w, which is further divided into space for various output fields. When a field
has to be truncated because it cannot extend beyond the beginning or the end
of the current line to fit in, then a truncation occurs. By default, the string
used is a single slash, as in -F /.

string may have more than one character, as in -F Also, in the particu-
lar case when string is empty (-F ""), truncation flagging is disabled, and no
truncation marks are appended in this case.

As a matter of convenience to the user, many usual backslashed escape se-
quences, as found in the C language, are recognized and converted to the cor-
responding characters by ptx itself.

‘-M string’
‘--macro-name=string’

Select another string to be used instead of ‘xx’, while generating output suitable
for nroff, troff or TEX.

‘-O’
‘--format=roff’

Choose an output format suitable for nroff or troff processing. Each output
line will look like:

.xx "tail" "before" "keyword_and_after" "head" "ref"

so it will be possible to write a ‘.xx’ roff macro to take care of the output type-
setting. This is the default output format when GNU extensions are disabled.
Option -M can be used to change ‘xx’ to another macro name.

In this output format, each non-graphical character, like newline and tab, is
merely changed to exactly one space, with no special attempt to compress
consecutive spaces. Each quote character ‘"’ is doubled so it will be correctly
processed by nroff or troff.

Chapter 7: Operating on sorted files 65

‘-T’
‘--format=tex’

Choose an output format suitable for TEX processing. Each output line will
look like:

\xx {tail}{before}{keyword}{after}{head}{ref}

so it will be possible to write a \xx definition to take care of the output typeset-
ting. Note that when references are not being produced, that is, neither option
-A nor option -r is selected, the last parameter of each \xx call is inhibited.
Option -M can be used to change ‘xx’ to another macro name.

In this output format, some special characters, like ‘$’, ‘%’, ‘&’, ‘#’ and ‘_’ are
automatically protected with a backslash. Curly brackets ‘{’, ‘}’ are protected
with a backslash and a pair of dollar signs (to force mathematical mode). The
backslash itself produces the sequence \backslash{}. Circumflex and tilde
diacritical marks produce the sequence ^\{ } and ~\{ } respectively. Other
diacriticized characters of the underlying character set produce an appropriate
TEX sequence as far as possible. The other non-graphical characters, like new-
line and tab, and all other characters which are not part of ASCII, are merely
changed to exactly one space, with no special attempt to compress consecutive
spaces. Let me know how to improve this special character processing for TEX.

7.5.5 The GNU extensions to ptx

This version of ptx contains a few features which do not exist in System V ptx. These
extra features are suppressed by using the -G command line option, unless overridden by
other command line options. Some GNU extensions cannot be recovered by overriding, so
the simple rule is to avoid -G if you care about GNU extensions. Here are the differences
between this program and System V ptx.

• This program can read many input files at once, it always writes the resulting con-
cordance on standard output. On the other hand, System V ptx reads only one file
and sends the result to standard output or, if a second file parameter is given on the
command, to that file.

Having output parameters not introduced by options is a dangerous practice which
GNU avoids as far as possible. So, for using ptx portably between GNU and System
V, you should always use it with a single input file, and always expect the result on
standard output. You might also want to automatically configure in a -G option to ptx
calls in products using ptx, if the configurator finds that the installed ptx accepts -G.

• The only options available in System V ptx are options -b, -f, -g, -i, -o, -r, -t and
-w. All other options are GNU extensions and are not repeated in this enumeration.
Moreover, some options have a slightly different meaning when GNU extensions are
enabled, as explained below.

• By default, concordance output is not formatted for troff or nroff. It is rather
formatted for a dumb terminal. troff or nroff output may still be selected through
option -O.

• Unless -R option is used, the maximum reference width is subtracted from the total
output line width. With GNU extensions disabled, width of references is not taken into
account in the output line width computations.

Chapter 7: Operating on sorted files 66

• All 256 bytes, even ASCII NUL bytes, are always read and processed from input file
with no adverse effect, even if GNU extensions are disabled. However, System V ptx

does not accept 8-bit characters, a few control characters are rejected, and the tilde ‘~’
is also rejected.

• Input line length is only limited by available memory, even if GNU extensions are
disabled. However, System V ptx processes only the first 200 characters in each line.

• The break (non-word) characters default to be every character except all letters of the
underlying character set, diacriticized or not. When GNU extensions are disabled, the
break characters default to space, tab and newline only.

• The program makes better use of output line width. If GNU extensions are disabled,
the program rather tries to imitate System V ptx, but still, there are some slight
disposition glitches this program does not completely reproduce.

• The user can specify both an Ignore file and an Only file. This is not allowed with
System V ptx.

7.6 tsort: Topological sort

tsort performs a topological sort on the given file, or standard input if no input file is given
or for a file of ‘-’. For more details and some history, see Section 7.6.1 [tsort background],
page 68. Synopsis:

tsort [option] [file]

tsort reads its input as pairs of strings, separated by blanks, indicating a partial order-
ing. The output is a total ordering that corresponds to the given partial ordering.

For example

tsort <<EOF

a b c

d

e f

b c d e

EOF

will produce the output

a

b

c

d

e

f

Consider a more realistic example. You have a large set of functions all in one file, and
they may all be declared static except one. Currently that one (say main) is the first function
defined in the file, and the ones it calls directly follow it, followed by those they call, etc.
Let’s say that you are determined to take advantage of prototypes, so you have to choose
between declaring all of those functions (which means duplicating a lot of information from
the definitions) and rearranging the functions so that as many as possible are defined before
they are used. One way to automate the latter process is to get a list for each function of
the functions it calls directly. Many programs can generate such lists. They describe a call

Chapter 7: Operating on sorted files 67

graph. Consider the following list, in which a given line indicates that the function on the
left calls the one on the right directly.

main parse_options

main tail_file

main tail_forever

tail_file pretty_name

tail_file write_header

tail_file tail

tail_forever recheck

tail_forever pretty_name

tail_forever write_header

tail_forever dump_remainder

tail tail_lines

tail tail_bytes

tail_lines start_lines

tail_lines dump_remainder

tail_lines file_lines

tail_lines pipe_lines

tail_bytes xlseek

tail_bytes start_bytes

tail_bytes dump_remainder

tail_bytes pipe_bytes

file_lines dump_remainder

recheck pretty_name

then you can use tsort to produce an ordering of those functions that satisfies your
requirement.

example$ tsort call-graph | tac

dump_remainder

start_lines

file_lines

pipe_lines

xlseek

start_bytes

pipe_bytes

tail_lines

tail_bytes

pretty_name

write_header

tail

recheck

parse_options

tail_file

tail_forever

main

tsort detects any cycles in the input and writes the first cycle encountered to standard
error.

Chapter 7: Operating on sorted files 68

Note that for a given partial ordering, generally there is no unique total ordering. In
the context of the call graph above, the function parse_options may be placed anywhere
in the list as long as it precedes main.

The only options are --help and --version. See Chapter 2 [Common options], page 2.

An exit status of zero indicates success, and a nonzero value indicates failure.

7.6.1 tsort: Background

tsort exists because very early versions of the Unix linker processed an archive file exactly
once, and in order. As ld read each object in the archive, it decided whether it was needed
in the program based on whether it defined any symbols which were undefined at that point
in the link.

This meant that dependencies within the archive had to be handled specially. For
example, scanf probably calls read. That means that in a single pass through an archive,
it was important for scanf.o to appear before read.o, because otherwise a program which
calls scanf but not read might end up with an unexpected unresolved reference to read.

The way to address this problem was to first generate a set of dependencies of one object
file on another. This was done by a shell script called lorder. The GNU tools don’t provide
a version of lorder, as far as I know, but you can still find it in BSD distributions.

Then you ran tsort over the lorder output, and you used the resulting sort to define
the order in which you added objects to the archive.

This whole procedure has been obsolete since about 1980, because Unix archives now
contain a symbol table (traditionally built by ranlib, now generally built by ar itself), and
the Unix linker uses the symbol table to effectively make multiple passes over an archive
file.

Anyhow, that’s where tsort came from. To solve an old problem with the way the linker
handled archive files, which has since been solved in different ways.

69

8 Operating on fields

8.1 cut: Print selected parts of lines

cut writes to standard output selected parts of each line of each input file, or standard
input if no files are given or for a file name of ‘-’. Synopsis:

cut option... [file]...

In the table which follows, the byte-list, character-list, and field-list are one or more
numbers or ranges (two numbers separated by a dash) separated by commas. Bytes, char-
acters, and fields are numbered starting at 1. Incomplete ranges may be given: -m means
‘1-m’; ‘n-’ means ‘n’ through end of line or last field. The list elements can be repeated,
can overlap, and can be specified in any order; but the selected input is written in the same
order that it is read, and is written exactly once.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-b byte-list’
‘--bytes=byte-list’

Select for printing only the bytes in positions listed in byte-list. Tabs and
backspaces are treated like any other character; they take up 1 byte. If an
output delimiter is specified, (see the description of --output-delimiter), then
output that string between ranges of selected bytes.

‘-c character-list’
‘--characters=character-list’

Select for printing only the characters in positions listed in character-list.
The same as -b for now, but internationalization will change that. Tabs and
backspaces are treated like any other character; they take up 1 character. If
an output delimiter is specified, (see the description of --output-delimiter),
then output that string between ranges of selected bytes.

‘-f field-list’
‘--fields=field-list’

Select for printing only the fields listed in field-list. Fields are separated by
a TAB character by default. Also print any line that contains no delimiter
character, unless the --only-delimited (-s) option is specified.

Note awk supports more sophisticated field processing, like reordering fields,
and handling fields aligned with blank characters. By default awk uses (and
discards) runs of blank characters to separate fields, and ignores leading and
trailing blanks.

awk ’{print $2}’ # print the second field

awk ’{print $(NF-1)}’ # print the penultimate field

awk ’{print $2,$1}’ # reorder the first two fields

Note while cut accepts field specifications in arbitrary order, output is always
in the order encountered in the file.

Chapter 8: Operating on fields 70

In the unlikely event that awk is unavailable, one can use the join command,
to process blank characters as awk does above.

join -a1 -o 1.2 - /dev/null # print the second field

join -a1 -o 1.2,1.1 - /dev/null # reorder the first two fields

‘-d input_delim_byte’
‘--delimiter=input_delim_byte’

With -f, use the first byte of input delim byte as the input fields separator
(default is TAB).

‘-n’ Do not split multi-byte characters (no-op for now).

‘-s’
‘--only-delimited’

For -f, do not print lines that do not contain the field separator character.
Normally, any line without a field separator is printed verbatim.

‘--output-delimiter=output_delim_string’
With -f, output fields are separated by output delim string. The default with
-f is to use the input delimiter. When using -b or -c to select ranges of byte or
character offsets (as opposed to ranges of fields), output output delim string
between non-overlapping ranges of selected bytes.

‘--complement’
This option is a GNU extension. Select for printing the complement of the
bytes, characters or fields selected with the -b, -c or -f options. In other
words, do not print the bytes, characters or fields specified via those options.
This option is useful when you have many fields and want to print all but a few
of them.

‘-z’
‘--zero-terminated’

Delimit items with a zero byte rather than a newline (ASCII LF). I.e., treat
input as items separated by ASCII NUL and terminate output items with ASCII
NUL. This option can be useful in conjunction with ‘perl -0’ or ‘find -print0’
and ‘xargs -0’ which do the same in order to reliably handle arbitrary file names
(even those containing blanks or other special characters).

An exit status of zero indicates success, and a nonzero value indicates failure.

8.2 paste: Merge lines of files

paste writes to standard output lines consisting of sequentially corresponding lines of each
given file, separated by a TAB character. Standard input is used for a file name of ‘-’ or if
no input files are given.

Synopsis:

paste [option]... [file]...

For example, with:

$ cat num2

1

Chapter 8: Operating on fields 71

2

$ cat let3

a

b

c

Take lines sequentially from each file:

$ paste num2 let3

1 a

2 b

c

Duplicate lines from a file:

$ paste num2 let3 num2

1 a 1

2 b 2

c

Intermix lines from stdin:

$ paste - let3 - < num2

1 a 2

b

c

Join consecutive lines with a space:

$ seq 4 | paste -d ’ ’ - -

1 2

3 4

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-s’
‘--serial’

Paste the lines of one file at a time rather than one line from each file. Using
the above example data:

$ paste -s num2 let3

1 2

a b c

‘-d delim-list’
‘--delimiters=delim-list’

Consecutively use the characters in delim-list instead of TAB to separate merged
lines. When delim-list is exhausted, start again at its beginning. Using the
above example data:

$ paste -d ’%_’ num2 let3 num2

1%a_1

2%b_2

%c_

Chapter 8: Operating on fields 72

‘-z’
‘--zero-terminated’

Delimit items with a zero byte rather than a newline (ASCII LF). I.e., treat
input as items separated by ASCII NUL and terminate output items with ASCII
NUL. This option can be useful in conjunction with ‘perl -0’ or ‘find -print0’
and ‘xargs -0’ which do the same in order to reliably handle arbitrary file names
(even those containing blanks or other special characters).

An exit status of zero indicates success, and a nonzero value indicates failure.

8.3 join: Join lines on a common field

join writes to standard output a line for each pair of input lines that have identical join
fields. Synopsis:

join [option]... file1 file2

Either file1 or file2 (but not both) can be ‘-’, meaning standard input. file1 and file2
should be sorted on the join fields.

$ cat file1

a 1

b 2

e 5

$ cat file2

a X

e Y

f Z

$ join file1 file2

a 1 X

e 5 Y

join’s default behavior (when no options are given):

• the join field is the first field in each line;

• fields in the input are separated by one or more blanks, with leading blanks on the line
ignored;

• fields in the output are separated by a space;

• each output line consists of the join field, the remaining fields from file1, then the
remaining fields from file2.

8.3.1 General options

The program accepts the following options. Also see Chapter 2 [Common options], page 2.

‘-a file-number’
Print a line for each unpairable line in file file-number (either ‘1’ or ‘2’), in
addition to the normal output.

‘--check-order’
Fail with an error message if either input file is wrongly ordered.

Chapter 8: Operating on fields 73

‘--nocheck-order’
Do not check that both input files are in sorted order. This is the default.

‘-e string’
Replace those output fields that are missing in the input with string. I.e.,
missing fields specified with the -12jo options.

‘--header’
Treat the first line of each input file as a header line. The header lines will
be joined and printed as the first output line. If -o is used to specify output
format, the header line will be printed according to the specified format. The
header lines will not be checked for ordering even if --check-order is specified.
Also if the header lines from each file do not match, the heading fields from the
first file will be used.

‘-i’
‘--ignore-case’

Ignore differences in case when comparing keys. With this option, the lines of
the input files must be ordered in the same way. Use ‘sort -f’ to produce this
ordering.

‘-1 field’ Join on field field (a positive integer) of file 1.

‘-2 field’ Join on field field (a positive integer) of file 2.

‘-j field’ Equivalent to -1 field -2 field.

‘-o field-list’
‘-o auto’ If the keyword ‘auto’ is specified, infer the output format from the first line in

each file. This is the same as the default output format but also ensures the
same number of fields are output for each line. Missing fields are replaced with
the -e option and extra fields are discarded.

Otherwise, construct each output line according to the format in field-list. Each
element in field-list is either the single character ‘0’ or has the form m.n where
the file number, m, is ‘1’ or ‘2’ and n is a positive field number.

A field specification of ‘0’ denotes the join field. In most cases, the functionality
of the ‘0’ field spec may be reproduced using the explicit m.n that corresponds
to the join field. However, when printing unpairable lines (using either of the -a
or -v options), there is no way to specify the join field using m.n in field-list if
there are unpairable lines in both files. To give join that functionality, POSIX
invented the ‘0’ field specification notation.

The elements in field-list are separated by commas or blanks. Blank separators
typically need to be quoted for the shell. For example, the commands ‘join -o

1.2,2.2’ and ‘join -o ’1.2 2.2’’ are equivalent.

All output lines—including those printed because of any -a or -v option—are
subject to the specified field-list.

‘-t char’ Use character char as the input and output field separator. Treat as significant
each occurrence of char in the input file. Use ‘sort -t char’, without the -b

option of ‘sort’, to produce this ordering. If ‘join -t ’’’ is specified, the

Chapter 8: Operating on fields 74

whole line is considered, matching the default operation of sort. If ‘-t ’\0’’ is
specified then the ASCII NUL character is used to delimit the fields.

‘-v file-number’
Print a line for each unpairable line in file file-number (either ‘1’ or ‘2’), instead
of the normal output.

‘-z’
‘--zero-terminated’

Delimit items with a zero byte rather than a newline (ASCII LF). I.e., treat
input as items separated by ASCII NUL and terminate output items with ASCII
NUL. This option can be useful in conjunction with ‘perl -0’ or ‘find -print0’
and ‘xargs -0’ which do the same in order to reliably handle arbitrary file
names (even those containing blanks or other special characters).Note with -z

the newline character is treated as a field separator.

An exit status of zero indicates success, and a nonzero value indicates failure.If the
--check-order option is given, unsorted inputs will cause a fatal error message. If the
option --nocheck-order is given, unsorted inputs will never cause an error message. If
neither of these options is given, wrongly sorted inputs are diagnosed only if an input file
is found to contain unpairable lines, and when both input files are non empty. If an input
file is diagnosed as being unsorted, the join command will exit with a nonzero status (and
the output should not be used).

Forcing join to process wrongly sorted input files containing unpairable lines by spec-
ifying --nocheck-order is not guaranteed to produce any particular output. The output
will probably not correspond with whatever you hoped it would be.

8.3.2 Pre-sorting

join requires sorted input files. Each input file should be sorted according to the key
(=field/column number) used in join. The recommended sorting option is ‘sort -k 1b,1’
(assuming the desired key is in the first column).

Typical usage:

$ sort -k 1b,1 file1 > file1.sorted

$ sort -k 1b,1 file2 > file2.sorted

$ join file1.sorted file2.sorted > file3

Normally, the sort order is that of the collating sequence specified by the LC_COLLATE

locale. Unless the -t option is given, the sort comparison ignores blanks at the start of the
join field, as in sort -b. If the --ignore-case option is given, the sort comparison ignores
the case of characters in the join field, as in sort -f:

$ sort -k 1bf,1 file1 > file1.sorted

$ sort -k 1bf,1 file2 > file2.sorted

$ join --ignore-case file1.sorted file2.sorted > file3

The sort and join commands should use consistent locales and options if the output of
sort is fed to join. You can use a command like ‘sort -k 1b,1’ to sort a file on its default
join field, but if you select a non-default locale, join field, separator, or comparison options,
then you should do so consistently between join and sort.

Chapter 8: Operating on fields 75

To avoid any locale-related issues, it is recommended to use the ‘C’ locale for both commands:

$ LC_ALL=C sort -k 1b,1 file1 > file1.sorted

$ LC_ALL=C sort -k 1b,1 file2 > file2.sorted

$ LC_ALL=C join file1.sorted file2.sorted > file3

8.3.3 Working with fields

Use -1,-2 to set the key fields for each of the input files. Ensure the preceding sort

commands operated on the same fields.

The following example joins two files, using the values from seventh field of the first file and
the third field of the second file:

$ sort -k 7b,7 file1 > file1.sorted

$ sort -k 3b,3 file2 > file2.sorted

$ join -1 7 -2 3 file1.sorted file2.sorted > file3

If the field number is the same for both files, use -j:

$ sort -k4b,4 file1 > file1.sorted

$ sort -k4b,4 file2 > file2.sorted

$ join -j4 file1.sorted file2.sorted > file3

Both sort and join operate of whitespace-delimited fields. To specify a different delimiter,
use -t in both:

$ sort -t, -k3b,3 file1 > file1.sorted

$ sort -t, -k3b,3 file2 > file2.sorted

$ join -t, -j3 file1.sorted file2.sorted > file3

To specify a tab (ascii 0x09) character instead of whitespace, use1:

$ sort -t$’\t’ -k3b,3 file1 > file1.sorted

$ sort -t$’\t’ -k3b,3 file2 > file2.sorted

$ join -t$’\t’ -j3 file1.sorted file2.sorted > file3

If ‘join -t ’’’ is specified then the whole line is considered which matches the default
operation of sort:

$ sort file1 > file1.sorted

$ sort file2 > file2.sorted

$ join -t ’’ file1.sorted file2.sorted > file3

8.3.4 Controlling join’s field matching

In this section the sort commands are omitted for brevity. Sorting the files before joining
is still required.

join’s default behavior is to print only lines common to both input files. Use -a and -v

to print unpairable lines from one or both files.

All examples below use the following two (pre-sorted) input files:

$ cat file1

a 1

b 2

$ cat file2

a A

c C

1 the $’\t’ is supported in most modern shells. For older shells, use a literal tab

Chapter 8: Operating on fields 76

Command Outcome

$ join file1 file2

a 1 A

common lines (intersection)

$ join -a 1 file1 file2

a 1 A

b 2

common lines and unpaired lines from the
first file

$ join -a 2 file1 file2

a 1 A

c C

common lines and unpaired lines from the
second file

$ join -a 1 -a 2 file1 file2

a 1 A

b 2

c C

all lines (paired and unpaired) from both
files (union).
see note below regarding -o auto.

$ join -v 1 file1 file2

b 2

unpaired lines from the first file (difference)

$ join -v 2 file1 file2

c C

unpaired lines from the second file (differ-
ence)

$ join -v 1 -v 2 file1 file2

b 2

c C

unpaired lines from both files, omitting
common lines (symmetric difference).

The -o auto -e X options are useful when dealing with unpaired lines. The following ex-
ample prints all lines (common and unpaired) from both files. Without -o auto it is not
easy to discern which fields originate from which file:

$ join -a 1 -a 2 file1 file2

a 1 A

b 2

c C

$ join -o auto -e X -a 1 -a 2 file1 file2

a 1 A

b 2 X

c X C

If the input has no unpairable lines, a GNU extension is available; the sort order can be
any order that considers two fields to be equal if and only if the sort comparison described
above considers them to be equal. For example:

Chapter 8: Operating on fields 77

$ cat file1

a a1

c c1

b b1

$ cat file2

a a2

c c2

b b2

$ join file1 file2

a a1 a2

c c1 c2

b b1 b2

8.3.5 Header lines

The --header option can be used when the files to join have a header line which is not
sorted:

$ cat file1

Name Age

Alice 25

Charlie 34

$ cat file2

Name Country

Alice France

Bob Spain

$ join --header -o auto -e NA -a1 -a2 file1 file2

Name Age Country

Alice 25 France

Bob NA Spain

Charlie 34 NA

To sort a file with a header line, use GNU sed -u. The following example sort the files
but keeps the first line of each file in place:

$ (sed -u 1q ; sort -k2b,2) < file1 > file1.sorted

$ (sed -u 1q ; sort -k2b,2) < file2 > file2.sorted

$ join --header -o auto -e NA -a1 -a2 file1.sorted file2.sorted > file3

8.3.6 Union, Intersection and Difference of files

Combine sort, uniq and join to perform the equivalent of set operations on files:

Command outcome
sort -u file1 file2 Union of unsorted files

78

sort file1 file2 | uniq -d Intersection of unsorted files

sort file1 file1 file2 | uniq -u Difference of unsorted files

sort file1 file2 | uniq -u Symmetric Difference of unsorted files

join -t ’’ -a1 -a2 file1 file2 Union of sorted files

join -t ’’ file1 file2 Intersection of sorted files

join -t ’’ -v2 file1 file2 Difference of sorted files

join -t ’’ -v1 -v2 file1 file2 Symmetric Difference of sorted files

All examples above operate on entire lines and not on specific fields: sort without -k
and join -t ’’ both consider entire lines as the key.

79

9 Operating on characters

These commands operate on individual characters.

9.1 tr: Translate, squeeze, and/or delete characters

Synopsis:

tr [option]... set1 [set2]

tr copies standard input to standard output, performing one of the following operations:

• translate, and optionally squeeze repeated characters in the result,

• squeeze repeated characters,

• delete characters,

• delete characters, then squeeze repeated characters from the result.

The set1 and (if given) set2 arguments define ordered sets of characters, referred to
below as set1 and set2. These sets are the characters of the input that tr operates on. The
--complement (-c, -C) option replaces set1 with its complement (all of the characters that
are not in set1).

Currently tr fully supports only single-byte characters. Eventually it will support multi-
byte characters; when it does, the -C option will cause it to complement the set of characters,
whereas -c will cause it to complement the set of values. This distinction will matter only
when some values are not characters, and this is possible only in locales using multibyte
encodings when the input contains encoding errors.

The program accepts the --help and --version options. See Chapter 2 [Common
options], page 2. Options must precede operands.

An exit status of zero indicates success, and a nonzero value indicates failure.

9.1.1 Specifying sets of characters

The format of the set1 and set2 arguments resembles the format of regular expressions;
however, they are not regular expressions, only lists of characters. Most characters simply
represent themselves in these strings, but the strings can contain the shorthands listed
below, for convenience. Some of them can be used only in set1 or set2, as noted below.

Backslash escapes
The following backslash escape sequences are recognized:

‘\a’ Control-G.

‘\b’ Control-H.

‘\f’ Control-L.

‘\n’ Control-J.

‘\r’ Control-M.

‘\t’ Control-I.

‘\v’ Control-K.

Chapter 9: Operating on characters 80

‘\ooo’ The 8-bit character with the value given by ooo, which is 1 to 3 octal
digits. Note that ‘\400’ is interpreted as the two-byte sequence,
‘\040’ ‘0’.

‘\\’ A backslash.

While a backslash followed by a character not listed above is interpreted as that
character, the backslash also effectively removes any special significance, so it
is useful to escape ‘[’, ‘]’, ‘*’, and ‘-’.

Ranges

The notation ‘m-n’ expands to all of the characters from m through n, in as-
cending order. m should collate before n; if it doesn’t, an error results. As an
example, ‘0-9’ is the same as ‘0123456789’.

GNU tr does not support the System V syntax that uses square brackets to en-
close ranges. Translations specified in that format sometimes work as expected,
since the brackets are often transliterated to themselves. However, they should
be avoided because they sometimes behave unexpectedly. For example, ‘tr -d

’[0-9]’’ deletes brackets as well as digits.

Many historically common and even accepted uses of ranges are not portable.
For example, on EBCDIC hosts using the ‘A-Z’ range will not do what most
would expect because ‘A’ through ‘Z’ are not contiguous as they are in ASCII.
If you can rely on a POSIX compliant version of tr, then the best way to
work around this is to use character classes (see below). Otherwise, it is most
portable (and most ugly) to enumerate the members of the ranges.

Repeated characters
The notation ‘[c*n]’ in set2 expands to n copies of character c. Thus, ‘[y*6]’
is the same as ‘yyyyyy’. The notation ‘[c*]’ in string2 expands to as many
copies of c as are needed to make set2 as long as set1. If n begins with ‘0’, it
is interpreted in octal, otherwise in decimal.

Character classes
The notation ‘[:class:]’ expands to all of the characters in the (predefined)
class class. The characters expand in no particular order, except for the upper
and lower classes, which expand in ascending order. When the --delete (-d)
and --squeeze-repeats (-s) options are both given, any character class can
be used in set2. Otherwise, only the character classes lower and upper are
accepted in set2, and then only if the corresponding character class (upper and
lower, respectively) is specified in the same relative position in set1. Doing
this specifies case conversion. The class names are given below; an error results
when an invalid class name is given.

alnum Letters and digits.

alpha Letters.

blank Horizontal whitespace.

cntrl Control characters.

digit Digits.

Chapter 9: Operating on characters 81

graph Printable characters, not including space.

lower Lowercase letters.

print Printable characters, including space.

punct Punctuation characters.

space Horizontal or vertical whitespace.

upper Uppercase letters.

xdigit Hexadecimal digits.

Equivalence classes
The syntax ‘[=c=]’ expands to all of the characters that are equivalent to c,
in no particular order. Equivalence classes are a relatively recent invention
intended to support non-English alphabets. But there seems to be no standard
way to define them or determine their contents. Therefore, they are not fully
implemented in GNU tr; each character’s equivalence class consists only of that
character, which is of no particular use.

9.1.2 Translating

tr performs translation when set1 and set2 are both given and the --delete (-d) option
is not given. tr translates each character of its input that is in set1 to the corresponding
character in set2. Characters not in set1 are passed through unchanged. When a character
appears more than once in set1 and the corresponding characters in set2 are not all the
same, only the final one is used. For example, these two commands are equivalent:

tr aaa xyz

tr a z

A common use of tr is to convert lowercase characters to uppercase. This can be done
in many ways. Here are three of them:

tr abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ

tr a-z A-Z

tr ’[:lower:]’ ’[:upper:]’

But note that using ranges like a-z above is not portable.

When tr is performing translation, set1 and set2 typically have the same length. If set1
is shorter than set2, the extra characters at the end of set2 are ignored.

On the other hand, making set1 longer than set2 is not portable; POSIX says that the
result is undefined. In this situation, BSD tr pads set2 to the length of set1 by repeating
the last character of set2 as many times as necessary. System V tr truncates set1 to the
length of set2.

By default, GNU tr handles this case like BSD tr. When the --truncate-set1 (-t)
option is given, GNU tr handles this case like the System V tr instead. This option is
ignored for operations other than translation.

Acting like System V tr in this case breaks the relatively common BSD idiom:

tr -cs A-Za-z0-9 ’\012’

because it converts only zero bytes (the first element in the complement of set1), rather
than all non-alphanumerics, to newlines.

Chapter 9: Operating on characters 82

By the way, the above idiom is not portable because it uses ranges, and it assumes that
the octal code for newline is 012. Assuming a POSIX compliant tr, here is a better way to
write it:

tr -cs ’[:alnum:]’ ’[\n*]’

9.1.3 Squeezing repeats and deleting

When given just the --delete (-d) option, tr removes any input characters that are in
set1.

When given just the --squeeze-repeats (-s) option and not translating, tr replaces
each input sequence of a repeated character that is in set1 with a single occurrence of that
character.

When given both --delete and --squeeze-repeats, tr first performs any deletions
using set1, then squeezes repeats from any remaining characters using set2.

The --squeeze-repeats option may also be used when translating, in which case tr

first performs translation, then squeezes repeats from any remaining characters using set2.

Here are some examples to illustrate various combinations of options:

• Remove all zero bytes:

tr -d ’\0’

• Put all words on lines by themselves. This converts all non-alphanumeric characters to
newlines, then squeezes each string of repeated newlines into a single newline:

tr -cs ’[:alnum:]’ ’[\n*]’

• Convert each sequence of repeated newlines to a single newline. I.e., delete blank lines:

tr -s ’\n’

• Find doubled occurrences of words in a document. For example, people often write
“the the” with the repeated words separated by a newline. The Bourne shell script
below works first by converting each sequence of punctuation and blank characters to
a single newline. That puts each “word” on a line by itself. Next it maps all uppercase
characters to lower case, and finally it runs uniq with the -d option to print out only
the words that were repeated.

#!/bin/sh

cat -- "$@" \

| tr -s ’[:punct:][:blank:]’ ’[\n*]’ \

| tr ’[:upper:]’ ’[:lower:]’ \

| uniq -d

• Deleting a small set of characters is usually straightforward. For example, to remove
all ‘a’s, ‘x’s, and ‘M’s you would do this:

tr -d axM

However, when ‘-’ is one of those characters, it can be tricky because ‘-’ has special
meanings. Performing the same task as above but also removing all ‘-’ characters, we
might try tr -d -axM, but that would fail because tr would try to interpret -a as a
command-line option. Alternatively, we could try putting the hyphen inside the string,
tr -d a-xM, but that wouldn’t work either because it would make tr interpret a-x as

Chapter 9: Operating on characters 83

the range of characters ‘a’. . . ‘x’ rather than the three. One way to solve the problem
is to put the hyphen at the end of the list of characters:

tr -d axM-

Or you can use ‘--’ to terminate option processing:

tr -d -- -axM

More generally, use the character class notation [=c=] with ‘-’ (or any other character)
in place of the ‘c’:

tr -d ’[=-=]axM’

Note how single quotes are used in the above example to protect the square brackets
from interpretation by a shell.

9.2 expand: Convert tabs to spaces

expand writes the contents of each given file, or standard input if none are given or for a
file of ‘-’, to standard output, with tab characters converted to the appropriate number of
spaces. Synopsis:

expand [option]... [file]...

By default, expand converts all tabs to spaces. It preserves backspace characters in
the output; they decrement the column count for tab calculations. The default action is
equivalent to -t 8 (set tabs every 8 columns).

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-t tab1[,tab2]...’
‘--tabs=tab1[,tab2]...’

If only one tab stop is given, set the tabs tab1 spaces apart (default is 8).
Otherwise, set the tabs at columns tab1, tab2, . . . (numbered from 0), and
replace any tabs beyond the last tab stop given with single spaces. Tab stops
can be separated by blanks as well as by commas.

As a GNU extension the last tab specified can be prefixed with a ‘/’ to indicate
a tab size to use for remaining positions. For example, --tabs=2,4,/8 will set
tab stops at position 2 and 4, and every multiple of 8 after that.

Also the last tab specified can be prefixed with a ‘+’ to indicate a tab size to
use for remaining positions, offset from the final explicitly specified tab stop.
For example, to ignore the 1 character gutter present in diff output, one can
specify a 1 character offset using --tabs=1,+8, which will set tab stops at
positions 1,9,17,. . .For compatibility, GNU expand also accepts the obsolete
option syntax, -t1[,t2].... New scripts should use -t t1[,t2]... instead.

‘-i’
‘--initial’

Only convert initial tabs (those that precede all non-space or non-tab charac-
ters) on each line to spaces.

An exit status of zero indicates success, and a nonzero value indicates failure.

Chapter 9: Operating on characters 84

9.3 unexpand: Convert spaces to tabs

unexpand writes the contents of each given file, or standard input if none are given or for a
file of ‘-’, to standard output, converting blanks at the beginning of each line into as many
tab characters as needed. In the default POSIX locale, a blank is a space or a tab; other
locales may specify additional blank characters. Synopsis:

unexpand [option]... [file]...

By default, unexpand converts only initial blanks (those that precede all non-blank
characters) on each line. It preserves backspace characters in the output; they decrement
the column count for tab calculations. By default, tabs are set at every 8th column.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-t tab1[,tab2]...’
‘--tabs=tab1[,tab2]...’

If only one tab stop is given, set the tabs tab1 columns apart instead of the
default 8. Otherwise, set the tabs at columns tab1, tab2, . . . (numbered from
0), and leave blanks beyond the tab stops given unchanged. Tab stops can be
separated by blanks as well as by commas.

As a GNU extension the last tab specified can be prefixed with a ‘/’ to indicate
a tab size to use for remaining positions. For example, --tabs=2,4,/8 will set
tab stops at position 2 and 4, and every multiple of 8 after that.

Also the last tab specified can be prefixed with a ‘+’ to indicate a tab size to use
for remaining positions, offset from the final explicitly specified tab stop. For
example, to ignore the 1 character gutter present in diff output, one can specify
a 1 character offset using --tabs=1,+8, which will set tab stops at positions
1,9,17,. . .This option implies the -a option.

For compatibility, GNU unexpand supports the obsolete option syntax,
-tab1[,tab2]..., where tab stops must be separated by commas. (Unlike -t,
this obsolete option does not imply -a.) New scripts should use --first-only
-t tab1[,tab2]... instead.

‘-a’
‘--all’ Also convert all sequences of two or more blanks just before a tab stop, even if

they occur after non-blank characters in a line.

An exit status of zero indicates success, and a nonzero value indicates failure.

85

10 Directory listing

This chapter describes the ls command and its variants dir and vdir, which list information
about files.

10.1 ls: List directory contents

The ls program lists information about files (of any type, including directories). Options
and file arguments can be intermixed arbitrarily, as usual.

For non-option command-line arguments that are directories, by default ls lists the
contents of directories, not recursively, and omitting files with names beginning with ‘.’.
For other non-option arguments, by default ls lists just the file name. If no non-option
argument is specified, ls operates on the current directory, acting as if it had been invoked
with a single argument of ‘.’.

By default, the output is sorted alphabetically, according to the locale settings in effect.1

If standard output is a terminal, the output is in columns (sorted vertically) and control
characters are output as question marks; otherwise, the output is listed one per line and
control characters are output as-is.

Because ls is such a fundamental program, it has accumulated many options over the
years. They are described in the subsections below; within each section, options are listed
alphabetically (ignoring case). The division of options into the subsections is not absolute,
since some options affect more than one aspect of ls’s operation.

Exit status:

0 success
1 minor problems (e.g., failure to access a file or directory not
specified as a command line argument. This happens when listing a
directory in which entries are actively being removed or renamed.)

2 serious trouble (e.g., memory exhausted, invalid option, failure
to access a file or directory specified as a command line argument
or a directory loop)

Also see Chapter 2 [Common options], page 2.

10.1.1 Which files are listed

These options determine which files ls lists information for. By default, ls lists files and
the contents of any directories on the command line, except that in directories it ignores
files whose names start with ‘.’.

‘-a’
‘--all’ In directories, do not ignore file names that start with ‘.’.

‘-A’
‘--almost-all’

In directories, do not ignore all file names that start with ‘.’; ignore only . and
... The --all (-a) option overrides this option.

1 If you use a non-POSIX locale (e.g., by setting LC_ALL to ‘en_US’), then ls may produce output that is
sorted differently than you’re accustomed to. In that case, set the LC_ALL environment variable to ‘C’.

Chapter 10: Directory listing 86

‘-B’
‘--ignore-backups’

In directories, ignore files that end with ‘~’. This option is equivalent to
‘--ignore=’*~’ --ignore=’.*~’’.

‘-d’
‘--directory’

List just the names of directories, as with other types of files, rather than
listing their contents. Do not follow symbolic links listed on the command
line unless the --dereference-command-line (-H), --dereference (-L), or
--dereference-command-line-symlink-to-dir options are specified.

‘-H’
‘--dereference-command-line’

If a command line argument specifies a symbolic link, show information for the
file the link references rather than for the link itself.

‘--dereference-command-line-symlink-to-dir’
Do not dereference symbolic links, with one exception: if a command
line argument specifies a symbolic link that refers to a directory, show
information for that directory rather than for the link itself. This is the
default behavior when no other dereferencing-related option has been
specified (--classify (-F), --directory (-d), (-l), --dereference (-L), or
--dereference-command-line (-H)).

‘--group-directories-first’
Group all the directories before the files and then sort the directories and the
files separately using the selected sort key (see –sort option). That is, this
option specifies a primary sort key, and the –sort option specifies a secondary
key. However, any use of --sort=none (-U) disables this option altogether.

‘--hide=PATTERN’
In directories, ignore files whose names match the shell pattern pattern, un-
less the --all (-a) or --almost-all (-A) is also given. This option acts like
--ignore=pattern except that it has no effect if --all (-a) or --almost-all
(-A) is also given.

This option can be useful in shell aliases. For example, if lx is an alias for ‘ls
--hide=’*~’’ and ly is an alias for ‘ls --ignore=’*~’’, then the command
‘lx -A’ lists the file README~ even though ‘ly -A’ would not.

‘-I pattern’
‘--ignore=pattern’

In directories, ignore files whose names match the shell pattern (not regular
expression) pattern. As in the shell, an initial ‘.’ in a file name does not match
a wildcard at the start of pattern. Sometimes it is useful to give this option
several times. For example,

$ ls --ignore=’.??*’ --ignore=’.[^.]’ --ignore=’#*’

The first option ignores names of length 3 or more that start with ‘.’, the second
ignores all two-character names that start with ‘.’ except ‘..’, and the third
ignores names that start with ‘#’.

Chapter 10: Directory listing 87

‘-L’
‘--dereference’

When showing file information for a symbolic link, show information for the file
the link references rather than the link itself. However, even with this option,
ls still prints the name of the link itself, not the name of the file that the link
points to.

‘-R’
‘--recursive’

List the contents of all directories recursively.

10.1.2 What information is listed

These options affect the information that ls displays. By default, only file names are shown.

‘--author’
List each file’s author when producing long format directory listings. In
GNU/Hurd, file authors can differ from their owners, but in other operating
systems the two are the same.

‘-D’
‘--dired’ With the long listing (-l) format, print an additional line after the main output:

//DIRED// beg1 end1 beg2 end2 ...

The begn and endn are unsigned integers that record the byte position of the
beginning and end of each file name in the output. This makes it easy for Emacs
to find the names, even when they contain unusual characters such as space or
newline, without fancy searching.

If directories are being listed recursively (-R), output a similar line with offsets
for each subdirectory name:

//SUBDIRED// beg1 end1 ...

Finally, output a line of the form:

//DIRED-OPTIONS// --quoting-style=word

where word is the quoting style (see Section 10.1.6 [Formatting the file names],
page 96).

Here is an actual example:

$ mkdir -p a/sub/deeper a/sub2

$ touch a/f1 a/f2

$ touch a/sub/deeper/file

$ ls -gloRF --dired a

a:

total 8

-rw-r--r-- 1 0 Jun 10 12:27 f1

-rw-r--r-- 1 0 Jun 10 12:27 f2

drwxr-xr-x 3 4096 Jun 10 12:27 sub/

drwxr-xr-x 2 4096 Jun 10 12:27 sub2/

a/sub:

Chapter 10: Directory listing 88

total 4

drwxr-xr-x 2 4096 Jun 10 12:27 deeper/

a/sub/deeper:

total 0

-rw-r--r-- 1 0 Jun 10 12:27 file

a/sub2:

total 0

//DIRED// 48 50 84 86 120 123 158 162 217 223 282 286

//SUBDIRED// 2 3 167 172 228 240 290 296

//DIRED-OPTIONS// --quoting-style=literal

Note that the pairs of offsets on the ‘//DIRED//’ line above delimit these names:
f1, f2, sub, sub2, deeper, file. The offsets on the ‘//SUBDIRED//’ line delimit
the following directory names: a, a/sub, a/sub/deeper, a/sub2.

Here is an example of how to extract the fifth entry name, ‘deeper’, corre-
sponding to the pair of offsets, 222 and 228:

$ ls -gloRF --dired a > out

$ dd bs=1 skip=222 count=6 < out 2>/dev/null; echo

deeper

Note that although the listing above includes a trailing slash for the ‘deeper’
entry, the offsets select the name without the trailing slash. However, if you
invoke ls with --dired along with an option like --escape (aka -b) and operate
on a file whose name contains special characters, notice that the backslash is
included:

$ touch ’a b’

$ ls -blog --dired ’a b’

-rw-r--r-- 1 0 Jun 10 12:28 a\ b

//DIRED// 30 34

//DIRED-OPTIONS// --quoting-style=escape

If you use a quoting style that adds quote marks (e.g., --quoting-style=c),
then the offsets include the quote marks. So beware that the user may select the
quoting style via the environment variable QUOTING_STYLE. Hence, applications
using --dired should either specify an explicit --quoting-style=literal op-
tion (aka -N or --literal) on the command line, or else be prepared to parse
the escaped names.

‘--full-time’
Produce long format directory listings, and list times in full. It is equivalent to
using --format=long with --time-style=full-iso (see Section 10.1.5 [For-
matting file timestamps], page 95).

‘-g’ Produce long format directory listings, but don’t display owner information.

Chapter 10: Directory listing 89

‘-G’
‘--no-group’

Inhibit display of group information in a long format directory listing. (This
is the default in some non-GNU versions of ls, so we provide this option for
compatibility.)

‘-h’
‘--human-readable’

Append a size letter to each size, such as ‘M’ for mebibytes. Powers of 1024
are used, not 1000; ‘M’ stands for 1,048,576 bytes. This option is equivalent to
--block-size=human-readable. Use the --si option if you prefer powers of
1000.

‘-i’
‘--inode’ Print the inode number (also called the file serial number and index number)

of each file to the left of the file name. (This number uniquely identifies each
file within a particular file system.)

‘-l’
‘--format=long’
‘--format=verbose’

In addition to the name of each file, print the file type, file mode bits, number
of hard links, owner name, group name, size, and timestamp (see Section 10.1.5
[Formatting file timestamps], page 95), normally the modification timestamp
(the mtime, see Chapter 28 [File timestamps], page 235). If the owner or group
name cannot be determined, print the owner or group ID instead, right-justified
as a cue that it is a number rather than a textual name. Print question marks
for other information that cannot be determined.

Normally the size is printed as a byte count without punctuation, but this can
be overridden (see Section 2.3 [Block size], page 3). For example, -h prints an
abbreviated, human-readable count, and ‘--block-size="’1"’ prints a byte
count with the thousands separator of the current locale.

For each directory that is listed, preface the files with a line ‘total blocks’,
where blocks is the total disk allocation for all files in that directory. The block
size currently defaults to 1024 bytes, but this can be overridden (see Section 2.3
[Block size], page 3). The blocks computed counts each hard link separately;
this is arguably a deficiency.

The file type is one of the following characters:

‘-’ regular file

‘b’ block special file

‘c’ character special file

‘C’ high performance (“contiguous data”) file

‘d’ directory

‘D’ door (Solaris 2.5 and up)

‘l’ symbolic link

Chapter 10: Directory listing 90

‘M’ off-line (“migrated”) file (Cray DMF)

‘n’ network special file (HP-UX)

‘p’ FIFO (named pipe)

‘P’ port (Solaris 10 and up)

‘s’ socket

‘?’ some other file type

The file mode bits listed are similar to symbolic mode specifications (see
Section 27.2 [Symbolic Modes], page 228). But ls combines multiple bits into
the third character of each set of permissions as follows:

‘s’ If the set-user-ID or set-group-ID bit and the corresponding exe-
cutable bit are both set.

‘S’ If the set-user-ID or set-group-ID bit is set but the corresponding
executable bit is not set.

‘t’ If the restricted deletion flag or sticky bit, and the other-executable
bit, are both set. The restricted deletion flag is another name for
the sticky bit. See Section 27.1 [Mode Structure], page 227.

‘T’ If the restricted deletion flag or sticky bit is set but the other-
executable bit is not set.

‘x’ If the executable bit is set and none of the above apply.

‘-’ Otherwise.

Following the file mode bits is a single character that specifies whether an
alternate access method such as an access control list applies to the file. When
the character following the file mode bits is a space, there is no alternate access
method. When it is a printing character, then there is such a method.

GNU ls uses a ‘.’ character to indicate a file with a security context, but no
other alternate access method.

A file with any other combination of alternate access methods is marked with
a ‘+’ character.

‘-n’
‘--numeric-uid-gid’

Produce long format directory listings, but display right-justified numeric user
and group IDs instead of left-justified owner and group names.

‘-o’ Produce long format directory listings, but don’t display group information. It
is equivalent to using --format=long with --no-group .

‘-s’
‘--size’ Print the disk allocation of each file to the left of the file name. This is the

amount of disk space used by the file, which is usually a bit more than the file’s
size, but it can be less if the file has holes.

Normally the disk allocation is printed in units of 1024 bytes, but this can be
overridden (see Section 2.3 [Block size], page 3).

Chapter 10: Directory listing 91

For files that are NFS-mounted from an HP-UX system to a BSD system, this
option reports sizes that are half the correct values. On HP-UX systems, it
reports sizes that are twice the correct values for files that are NFS-mounted
from BSD systems. This is due to a flaw in HP-UX; it also affects the HP-UX
ls program.

‘--si’ Append an SI-style abbreviation to each size, such as ‘M’ for megabytes. Pow-
ers of 1000 are used, not 1024; ‘M’ stands for 1,000,000 bytes. This option is
equivalent to --block-size=si. Use the -h or --human-readable option if
you prefer powers of 1024.

‘-Z’
‘--context’

Display the SELinux security context or ‘?’ if none is found. When used with
the -l option, print the security context to the left of the size column.

10.1.3 Sorting the output

These options change the order in which ls sorts the information it outputs. By default,
sorting is done by character code (e.g., ASCII order).

‘-c’
‘--time=ctime’
‘--time=status’

If the long listing format (e.g., -l, -o) is being used, print the status change
timestamp (the ctime) instead of the mtime. When explicitly sorting by time
(--sort=time or -t) or when not using a long listing format, sort according to
the ctime. See Chapter 28 [File timestamps], page 235.

‘-f’ Primarily, like -U—do not sort; list the files in whatever order they are stored
in the directory. But also enable -a (list all files) and disable -l, --color, and
-s (if they were specified before the -f).

‘-r’
‘--reverse’

Reverse whatever the sorting method is—e.g., list files in reverse alphabetical
order, youngest first, smallest first, or whatever.

‘-S’
‘--sort=size’

Sort by file size, largest first.

‘-t’
‘--sort=time’

Sort by modification timestamp (mtime) by default, newest first. The time-
stamp to order by can be changed with the --time option. See Chapter 28
[File timestamps], page 235.

Chapter 10: Directory listing 92

‘-u’
‘--time=atime’
‘--time=access’
‘--time=use’

If the long listing format (e.g., --format=long) is being used, print the last
access timestamp (the atime). When explicitly sorting by time (--sort=time
or -t) or when not using a long listing format, sort according to the atime. See
Chapter 28 [File timestamps], page 235.

‘--time=birth’
‘--time=creation’

If the long listing format (e.g., --format=long) is being used, print the file
creation timestamp if available. When explicitly sorting by time (--sort=time
or -t) or when not using a long listing format, sort according to the birth time.
See Chapter 28 [File timestamps], page 235.

‘-U’
‘--sort=none’

Do not sort; list the files in whatever order they are stored in the directory.
(Do not do any of the other unrelated things that -f does.) This is especially
useful when listing very large directories, since not doing any sorting can be
noticeably faster.

‘-v’
‘--sort=version’

Sort by version name and number, lowest first. It behaves like a default sort,
except that each sequence of decimal digits is treated numerically as an in-
dex/version number. (See Chapter 30 [Version sort ordering], page 243.)

‘-X’
‘--sort=extension’

Sort directory contents alphabetically by file extension (characters after the last
‘.’); files with no extension are sorted first.

10.1.4 General output formatting

These options affect the appearance of the overall output.

‘-1’
‘--format=single-column’

List one file per line. This is the default for ls when standard output is not a
terminal. See also the -b and -q options to suppress direct output of newline
characters within a file name.

‘-C’
‘--format=vertical’

List files in columns, sorted vertically. This is the default for ls if standard
output is a terminal. It is always the default for the dir program. GNU ls

uses variable width columns to display as many files as possible in the fewest
lines.

Chapter 10: Directory listing 93

‘--color [=when]’
Specify whether to use color for distinguishing file types. when may be omitted,
or one of:

• none - Do not use color at all. This is the default.

• auto - Only use color if standard output is a terminal.

• always - Always use color.

Specifying --color and no when is equivalent to --color=always. If piping a
colorized listing through a pager like less, use the -R option to pass the color
codes to the terminal.

Note that using the --color option may incur a noticeable performance penalty
when run in a directory with very many entries, because the default settings
require that ls stat every single file it lists. However, if you would like most
of the file-type coloring but can live without the other coloring options (e.g.,
executable, orphan, sticky, other-writable, capability), use dircolors to set the
LS_COLORS environment variable like this,

eval $(dircolors -p | perl -pe \

’s/^((CAP|S[ET]|O[TR]|M|E)\w+).*/$1 00/’ | dircolors -)

and on a dirent.d_type-capable file system, ls will perform only one stat

call per command line argument.

‘-F’
‘--classify’
‘--indicator-style=classify’

Append a character to each file name indicating the file type. Also, for regular
files that are executable, append ‘*’. The file type indicators are ‘/’ for direc-
tories, ‘@’ for symbolic links, ‘|’ for FIFOs, ‘=’ for sockets, ‘>’ for doors, and
nothing for regular files. Do not follow symbolic links listed on the command
line unless the --dereference-command-line (-H), --dereference (-L), or
--dereference-command-line-symlink-to-dir options are specified.

‘--file-type’
‘--indicator-style=file-type’

Append a character to each file name indicating the file type. This is like -F,
except that executables are not marked.

‘--hyperlink [=when]’
Output codes recognized by some terminals to link to files using the ‘file://’
URI format. when may be omitted, or one of:

• none - Do not use hyperlinks at all. This is the default.

• auto - Only use hyperlinks if standard output is a terminal.

• always - Always use hyperlinks.

Specifying --hyperlink and no when is equivalent to --hyperlink=always.

‘--indicator-style=word’
Append a character indicator with style word to entry names, as follows:

‘none’ Do not append any character indicator; this is the default.

Chapter 10: Directory listing 94

‘slash’ Append ‘/’ for directories. This is the same as the -p option.

‘file-type’
Append ‘/’ for directories, ‘@’ for symbolic links, ‘|’ for FIFOs, ‘=’
for sockets, and nothing for regular files. This is the same as the
--file-type option.

‘classify’
Append ‘*’ for executable regular files, otherwise behave as for
‘file-type’. This is the same as the -F or --classify option.

‘-k’
‘--kibibytes’

Set the default block size to its normal value of 1024 bytes, overriding any
contrary specification in environment variables (see Section 2.3 [Block size],
page 3). If --block-size, -h, --human-readable, or --si options are used,
they take precedence over -k or --kibibytes even if -k or --kibibytes is
placed after the other options.

The -k or --kibibytes option affects the per-directory block count written by
the -l and similar options, and the size written by the -s or --size option. It
does not affect the file size written by -l.

‘-m’
‘--format=commas’

List files horizontally, with as many as will fit on each line, separated by ‘, ’ (a
comma and a space).

‘-p’
‘--indicator-style=slash’

Append a ‘/’ to directory names.

‘-x’
‘--format=across’
‘--format=horizontal’

List the files in columns, sorted horizontally.

‘-T cols’
‘--tabsize=cols’

Assume that each tab stop is cols columns wide. The default is 8. ls uses tabs
where possible in the output, for efficiency. If cols is zero, do not use tabs at
all.

Some terminal emulators might not properly align columns to the right of a
TAB following a non-ASCII byte. You can avoid that issue by using the -T0

option or put TABSIZE=0 in your environment, to tell ls to align using spaces,
not tabs.

‘-w cols’
‘--width=cols’

Assume the screen is cols columns wide. The default is taken from the terminal
settings if possible; otherwise the environment variable COLUMNS is used if it is
set; otherwise the default is 80. With a cols value of ‘0’, there is no limit on

Chapter 10: Directory listing 95

the length of the output line, and that single output line will be delimited with
spaces, not tabs.

10.1.5 Formatting file timestamps

By default, file timestamps are listed in abbreviated form, using a date like ‘Mar 30 2002’
for non-recent timestamps, and a date-without-year and time like ‘Mar 30 23:45’ for recent
timestamps. This format can change depending on the current locale as detailed below.

A timestamp is considered to be recent if it is less than six months old, and is not dated
in the future. If a timestamp dated today is not listed in recent form, the timestamp is in
the future, which means you probably have clock skew problems which may break programs
like make that rely on file timestamps. See Chapter 28 [File timestamps], page 235.

Timestamps are listed according to the time zone rules specified by the TZ environment
variable, or by the system default rules if TZ is not set. See Section “Specifying the Time
Zone with TZ” in The GNU C Library Reference Manual.

The following option changes how file timestamps are printed.

‘--time-style=style’
List timestamps in style style. The style should be one of the following:

‘+format’ List timestamps using format, where format is interpreted like
the format argument of date (see Section 21.1 [date invocation],
page 187). For example, --time-style="+%Y-%m-%d %H:%M:%S"

causes ls to list timestamps like ‘2002-03-30 23:45:56’. As with
date, format’s interpretation is affected by the LC_TIME locale cat-
egory.

If format contains two format strings separated by a newline, the
former is used for non-recent files and the latter for recent files; if
you want output columns to line up, you may need to insert spaces
in one of the two formats.

‘full-iso’
List timestamps in full using ISO 8601-like date, time, and time
zone components with nanosecond precision, e.g., ‘2002-03-30
23:45:56.477817180 -0700’. This style is equivalent to
‘+%Y-%m-%d %H:%M:%S.%N %z’.

This is useful because the time output includes all the information
that is available from the operating system. For example, this can
help explain make’s behavior, since GNU make uses the full time-
stamp to determine whether a file is out of date.

‘long-iso’
List ISO 8601 date and time components with minute precision,
e.g., ‘2002-03-30 23:45’. These timestamps are shorter than
‘full-iso’ timestamps, and are usually good enough for everyday
work. This style is equivalent to ‘+%Y-%m-%d %H:%M’.

‘iso’ List ISO 8601 dates for non-recent timestamps (e.g., ‘2002-03-30
’), and ISO 8601-like month, day, hour, and minute for recent time-
stamps (e.g., ‘03-30 23:45’). These timestamps are uglier than

Chapter 10: Directory listing 96

‘long-iso’ timestamps, but they carry nearly the same informa-
tion in a smaller space and their brevity helps ls output fit within
traditional 80-column output lines. The following two ls invoca-
tions are equivalent:

newline=’

’

ls -l --time-style="+%Y-%m-%d $newline%m-%d %H:%M"

ls -l --time-style="iso"

‘locale’ List timestamps in a locale-dependent form. For example, a Finnish
locale might list non-recent timestamps like ‘maalis 30 2002’ and
recent timestamps like ‘maalis 30 23:45’. Locale-dependent time-
stamps typically consume more space than ‘iso’ timestamps and
are harder for programs to parse because locale conventions vary
so widely, but they are easier for many people to read.

The LC_TIME locale category specifies the timestamp format. The
default POSIX locale uses timestamps like ‘Mar 30 2002’ and ‘Mar
30 23:45’; in this locale, the following two ls invocations are equiv-
alent:

newline=’

’

ls -l --time-style="+%b %e %Y$newline%b %e %H:%M"

ls -l --time-style="locale"

Other locales behave differently. For example, in a German
locale, --time-style="locale" might be equivalent to
--time-style="+%e. %b %Y $newline%e. %b %H:%M" and might
generate timestamps like ‘30. Mär 2002 ’ and ‘30. Mär 23:45’.

‘posix-style’
List POSIX-locale timestamps if the LC_TIME locale category
is POSIX, style timestamps otherwise. For example, the
‘posix-long-iso’ style lists timestamps like ‘Mar 30 2002’ and
‘Mar 30 23:45’ when in the POSIX locale, and like ‘2002-03-30
23:45’ otherwise.

You can specify the default value of the --time-style option with the environment
variable TIME_STYLE; if TIME_STYLE is not set the default style is ‘locale’. GNU Emacs
21.3 and later use the --dired option and therefore can parse any date format, but if
you are using Emacs 21.1 or 21.2 and specify a non-POSIX locale you may need to set
‘TIME_STYLE="posix-long-iso"’.

To avoid certain denial-of-service attacks, timestamps that would be longer than 1000
bytes may be treated as errors.

10.1.6 Formatting the file names

These options change how file names themselves are printed.

Chapter 10: Directory listing 97

‘-b’
‘--escape’
‘--quoting-style=escape’

Quote nongraphic characters in file names using alphabetic and octal backslash
sequences like those used in C.

‘-N’
‘--literal’
‘--quoting-style=literal’

Do not quote file names. However, with ls nongraphic characters are still
printed as question marks if the output is a terminal and you do not specify
the --show-control-chars option.

‘-q’
‘--hide-control-chars’

Print question marks instead of nongraphic characters in file names. This is
the default if the output is a terminal and the program is ls.

‘-Q’
‘--quote-name’
‘--quoting-style=c’

Enclose file names in double quotes and quote nongraphic characters as in C.

‘--quoting-style=word’
Use style word to quote file names and other strings that may contain arbitrary
characters. The word should be one of the following:

‘literal’ Output strings as-is; this is the same as the -N or --literal option.

‘shell’ Quote strings for the shell if they contain shell metacharacters or
would cause ambiguous output. The quoting is suitable for POSIX-
compatible shells like bash, but it does not always work for incom-
patible shells like csh.

‘shell-always’
Quote strings for the shell, even if they would normally not require
quoting.

‘shell-escape’
Like ‘shell’, but also quoting non-printable characters using the
POSIX proposed ‘$’’’ syntax suitable for most shells.

‘shell-escape-always’
Like ‘shell-escape’, but quote strings even if they would normally
not require quoting.

‘c’ Quote strings as for C character string literals, including the sur-
rounding double-quote characters; this is the same as the -Q or
--quote-name option.

‘escape’ Quote strings as for C character string literals, except omit the
surrounding double-quote characters; this is the same as the -b or
--escape option.

Chapter 10: Directory listing 98

‘clocale’ Quote strings as for C character string literals, except use surround-
ing quotation marks appropriate for the locale.

‘locale’ Quote strings as for C character string literals, except use surround-
ing quotation marks appropriate for the locale, and quote ’like

this’ instead of "like this" in the default C locale. This looks
nicer on many displays.

You can specify the default value of the --quoting-style option with the en-
vironment variable QUOTING_STYLE. If that environment variable is not set, the
default value is ‘shell-escape’ when the output is a terminal, and ‘literal’
otherwise.

‘--show-control-chars’
Print nongraphic characters as-is in file names. This is the default unless the
output is a terminal and the program is ls.

10.2 dir: Briefly list directory contents

dir is equivalent to ls -C -b; that is, by default files are listed in columns, sorted vertically,
and special characters are represented by backslash escape sequences.

See Section 10.1 [ls invocation], page 85.

10.3 vdir: Verbosely list directory contents

vdir is equivalent to ls -l -b; that is, by default files are listed in long format and special
characters are represented by backslash escape sequences.

See Section 10.1 [ls invocation], page 85.

10.4 dircolors: Color setup for ls

dircolors outputs a sequence of shell commands to set up the terminal for color output
from ls (and dir, etc.). Typical usage:

eval "$(dircolors [option]... [file])"

If file is specified, dircolors reads it to determine which colors to use for which file
types and extensions. Otherwise, a precompiled database is used. For details on the format
of these files, run ‘dircolors --print-database’.

To make dircolors read a ~/.dircolors file if it exists, you can put the following lines
in your ~/.bashrc (or adapt them to your favorite shell):

d=.dircolors

test -r $d && eval "$(dircolors $d)"

The output is a shell command to set the LS_COLORS environment variable. You can
specify the shell syntax to use on the command line, or dircolors will guess it from the
value of the SHELL environment variable.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

99

‘-b’
‘--sh’
‘--bourne-shell’

Output Bourne shell commands. This is the default if the SHELL environment
variable is set and does not end with ‘csh’ or ‘tcsh’.

‘-c’
‘--csh’
‘--c-shell’

Output C shell commands. This is the default if SHELL ends with csh or tcsh.

‘-p’
‘--print-database’

Print the (compiled-in) default color configuration database. This output is
itself a valid configuration file, and is fairly descriptive of the possibilities.

An exit status of zero indicates success, and a nonzero value indicates failure.

100

11 Basic operations

This chapter describes the commands for basic file manipulation: copying, moving (renam-
ing), and deleting (removing).

11.1 cp: Copy files and directories

cp copies files (or, optionally, directories). The copy is completely independent of the orig-
inal. You can either copy one file to another, or copy arbitrarily many files to a destination
directory. Synopses:

cp [option]... [-T] source dest

cp [option]... source... directory

cp [option]... -t directory source...

• If two file names are given, cp copies the first file to the second.

• If the --target-directory (-t) option is given, or failing that if the last file is a
directory and the --no-target-directory (-T) option is not given, cp copies each
source file to the specified directory, using the sources’ names.

Generally, files are written just as they are read. For exceptions, see the --sparse option
below.

By default, cp does not copy directories. However, the -R, -a, and -r options cause cp

to copy recursively by descending into source directories and copying files to corresponding
destination directories.

When copying from a symbolic link, cp normally follows the link only when not copying
recursively or when --link (-l) is used. This default can be overridden with the --archive
(-a), -d, --dereference (-L), --no-dereference (-P), and -H options. If more than one
of these options is specified, the last one silently overrides the others.

When copying to a symbolic link, cp follows the link only when it refers to an existing
regular file. However, when copying to a dangling symbolic link, cp refuses by default,
and fails with a diagnostic, since the operation is inherently dangerous. This behavior is
contrary to historical practice and to POSIX. Set POSIXLY_CORRECT to make cp attempt
to create the target of a dangling destination symlink, in spite of the possible risk. Also,
when an option like --backup or --link acts to rename or remove the destination before
copying, cp renames or removes the symbolic link rather than the file it points to.

By default, cp copies the contents of special files only when not copying recursively. This
default can be overridden with the --copy-contents option.

cp generally refuses to copy a file onto itself, with the following exception: if --force
--backup is specified with source and dest identical, and referring to a regular file, cp
will make a backup file, either regular or numbered, as specified in the usual ways (see
Section 2.2 [Backup options], page 3). This is useful when you simply want to make a
backup of an existing file before changing it.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

Chapter 11: Basic operations 101

‘-a’
‘--archive’

Preserve as much as possible of the structure and attributes of the original files
in the copy (but do not attempt to preserve internal directory structure; i.e.,
‘ls -U’ may list the entries in a copied directory in a different order). Try to
preserve SELinux security context and extended attributes (xattr), but ignore
any failure to do that and print no corresponding diagnostic. Equivalent to -dR

--preserve=all with the reduced diagnostics.

‘--attributes-only’
Copy only the specified attributes of the source file to the destination. If the
destination already exists, do not alter its contents. See the --preserve option
for controlling which attributes to copy.

‘-b’
‘--backup[=method]’

See Section 2.2 [Backup options], page 3. Make a backup of each file that
would otherwise be overwritten or removed. As a special case, cp makes a
backup of source when the force and backup options are given and source and
dest are the same name for an existing, regular file. One useful application of
this combination of options is this tiny Bourne shell script:

#!/bin/sh

Usage: backup FILE...

Create a GNU-style backup of each listed FILE.

fail=0

for i; do

cp --backup --force --preserve=all -- "$i" "$i" || fail=1

done

exit $fail

‘--copy-contents’
If copying recursively, copy the contents of any special files (e.g., FIFOs and
device files) as if they were regular files. This means trying to read the data
in each source file and writing it to the destination. It is usually a mistake
to use this option, as it normally has undesirable effects on special files like
FIFOs and the ones typically found in the /dev directory. In most cases, cp -R

--copy-contents will hang indefinitely trying to read from FIFOs and special
files like /dev/console, and it will fill up your destination disk if you use it to
copy /dev/zero. This option has no effect unless copying recursively, and it
does not affect the copying of symbolic links.

‘-d’ Copy symbolic links as symbolic links rather than copying the files that they
point to, and preserve hard links between source files in the copies. Equivalent
to --no-dereference --preserve=links.

‘-f’
‘--force’ When copying without this option and an existing destination file cannot be

opened for writing, the copy fails. However, with --force, when a destination
file cannot be opened, cp then tries to recreate the file by first removing it. Note
--force alone will not remove dangling symlinks. When this option is combined

Chapter 11: Basic operations 102

with --link (-l) or --symbolic-link (-s), the destination link is replaced,
and unless --backup (-b) is also given there is no brief moment when the
destination does not exist. Also see the description of --remove-destination.

This option is independent of the --interactive or -i option: neither cancels
the effect of the other.

This option is ignored when the --no-clobber or -n option is also used.

‘-H’ If a command line argument specifies a symbolic link, then copy the file it points
to rather than the symbolic link itself. However, copy (preserving its nature)
any symbolic link that is encountered via recursive traversal.

‘-i’
‘--interactive’

When copying a file other than a directory, prompt whether to overwrite an
existing destination file. The -i option overrides a previous -n option.

‘-l’
‘--link’ Make hard links instead of copies of non-directories.

‘-L’
‘--dereference’

Follow symbolic links when copying from them. With this option, cp cannot
create a symbolic link. For example, a symlink (to regular file) in the source
tree will be copied to a regular file in the destination tree.

‘-n’
‘--no-clobber’

Do not overwrite an existing file; silently do nothing instead. This option
overrides a previous -i option. This option is mutually exclusive with -b or
--backup option.

‘-P’
‘--no-dereference’

Copy symbolic links as symbolic links rather than copying the files that they
point to. This option affects only symbolic links in the source; symbolic links
in the destination are always followed if possible.

‘-p’
‘--preserve[=attribute_list]’

Preserve the specified attributes of the original files. If specified, the
attribute list must be a comma-separated list of one or more of the following
strings:

‘mode’ Preserve the file mode bits and access control lists.

‘ownership’
Preserve the owner and group. On most modern systems, only
users with appropriate privileges may change the owner of a file,
and ordinary users may preserve the group ownership of a file only
if they happen to be a member of the desired group.

Chapter 11: Basic operations 103

‘timestamps’
Preserve the times of last access and last modification, when possi-
ble. On older systems, it is not possible to preserve these attributes
when the affected file is a symbolic link. However, many systems
now provide the utimensat function, which makes it possible even
for symbolic links.

‘links’ Preserve in the destination files any links between corresponding
source files. Note that with -L or -H, this option can convert sym-
bolic links to hard links. For example,

$ mkdir c; : > a; ln -s a b; cp -aH a b c; ls -i1 c

74161745 a

74161745 b

Note the inputs: b is a symlink to regular file a, yet the files
in destination directory, c/, are hard-linked. Since -a implies
--no-dereference it would copy the symlink, but the later -H tells
cp to dereference the command line arguments where it then sees
two files with the same inode number. Then the --preserve=links
option also implied by -a will preserve the perceived hard link.

Here is a similar example that exercises cp’s -L option:

$ mkdir b c; (cd b; : > a; ln -s a b); cp -aL b c; ls -i1 c/b

74163295 a

74163295 b

‘context’ Preserve SELinux security context of the file, or fail with full diag-
nostics.

‘xattr’ Preserve extended attributes of the file, or fail with full diagnostics.
If cp is built without xattr support, ignore this option. If SELinux
context, ACLs or Capabilities are implemented using xattrs, they
are preserved implicitly by this option as well, i.e., even without
specifying --preserve=mode or --preserve=context.

‘all’ Preserve all file attributes. Equivalent to specifying all of the above,
but with the difference that failure to preserve SELinux security
context or extended attributes does not change cp’s exit status.
In contrast to -a, all but ‘Operation not supported’ warnings are
output.

Using --preserve with no attribute list is equivalent to --preserve=mode,ownership,timestamps.

In the absence of this option, the permissions of existing destination files are
unchanged. Each new file is created with the mode of the corresponding source
file minus the set-user-ID, set-group-ID, and sticky bits as the create mode;
the operating system then applies either the umask or a default ACL, possibly
resulting in a more restrictive file mode. See Chapter 27 [File permissions],
page 227.

‘--no-preserve=attribute_list’
Do not preserve the specified attributes. The attribute list has the same form
as for --preserve.

Chapter 11: Basic operations 104

‘--parents’
Form the name of each destination file by appending to the target directory a
slash and the specified name of the source file. The last argument given to cp

must be the name of an existing directory. For example, the command:

cp --parents a/b/c existing_dir

copies the file a/b/c to existing_dir/a/b/c, creating any missing intermediate
directories.

‘-R’
‘-r’
‘--recursive’

Copy directories recursively. By default, do not follow symbolic links in the
source unless used together with the --link (-l) option; see the --archive

(-a), -d, --dereference (-L), --no-dereference (-P), and -H options. Spe-
cial files are copied by creating a destination file of the same type as the source;
see the --copy-contents option. It is not portable to use -r to copy symbolic
links or special files. On some non-GNU systems, -r implies the equivalent
of -L and --copy-contents for historical reasons. Also, it is not portable
to use -R to copy symbolic links unless you also specify -P, as POSIX allows
implementations that dereference symbolic links by default.

‘--reflink[=when]’
Perform a lightweight, copy-on-write (COW) copy, if supported by the file sys-
tem. Once it has succeeded, beware that the source and destination files share
the same disk data blocks as long as they remain unmodified. Thus, if a disk
I/O error affects data blocks of one of the files, the other suffers the same fate.

The when value can be one of the following:

‘always’ The default behavior: if the copy-on-write operation is not sup-
ported then report the failure for each file and exit with a failure
status.

‘auto’ If the copy-on-write operation is not supported then fall back to
the standard copy behavior.

‘never’ Disable copy-on-write operation and use the standard copy behav-
ior.

This option is overridden by the --link, --symbolic-link and
--attributes-only options, thus allowing it to be used to configure the
default data copying behavior for cp. For example, with the following alias, cp
will use the minimum amount of space supported by the file system.

alias cp=’cp --reflink=auto --sparse=always’

‘--remove-destination’
Remove each existing destination file before attempting to open it (contrast
with -f above).

‘--sparse=when’
A sparse file contains holes—a sequence of zero bytes that does not occupy any
physical disk blocks; the ‘read’ system call reads these as zeros. This can both

Chapter 11: Basic operations 105

save considerable disk space and increase speed, since many binary files contain
lots of consecutive zero bytes. By default, cp detects holes in input source files
via a crude heuristic and makes the corresponding output file sparse as well.
Only regular files may be sparse.

The when value can be one of the following:

‘auto’ The default behavior: if the input file is sparse, attempt to make
the output file sparse, too. However, if an output file exists but
refers to a non-regular file, then do not attempt to make it sparse.

‘always’ For each sufficiently long sequence of zero bytes in the input file,
attempt to create a corresponding hole in the output file, even if
the input file does not appear to be sparse. This is useful when the
input file resides on a file system that does not support sparse files
(for example, ‘efs’ file systems in SGI IRIX 5.3 and earlier), but
the output file is on a type of file system that does support them.
Holes may be created only in regular files, so if the destination file
is of some other type, cp does not even try to make it sparse.

‘never’ Never make the output file sparse. This is useful in creating a file
for use with the mkswap command, since such a file must not have
any holes.

‘--strip-trailing-slashes’
Remove any trailing slashes from each source argument. See Section 2.9 [Trail-
ing slashes], page 9.

‘-s’
‘--symbolic-link’

Make symbolic links instead of copies of non-directories. All source file names
must be absolute (starting with ‘/’) unless the destination files are in the current
directory. This option merely results in an error message on systems that do
not support symbolic links.

‘-S suffix’
‘--suffix=suffix’

Append suffix to each backup file made with -b. See Section 2.2 [Backup
options], page 3.

‘-t directory’
‘--target-directory=directory’

Specify the destination directory. See Section 2.8 [Target directory], page 8.

‘-T’
‘--no-target-directory’

Do not treat the last operand specially when it is a directory or a symbolic link
to a directory. See Section 2.8 [Target directory], page 8.

‘-u’
‘--update’

Do not copy a non-directory that has an existing destination with the same or
newer modification timestamp. If timestamps are being preserved, the compar-
ison is to the source timestamp truncated to the resolutions of the destination

Chapter 11: Basic operations 106

file system and of the system calls used to update timestamps; this avoids du-
plicate work if several ‘cp -pu’ commands are executed with the same source
and destination. This option is ignored if the -n or --no-clobber option is
also specified. Also, if --preserve=links is also specified (like with ‘cp -au’
for example), that will take precedence; consequently, depending on the order
that files are processed from the source, newer files in the destination may be
replaced, to mirror hard links in the source.

‘-v’
‘--verbose’

Print the name of each file before copying it.

‘-x’
‘--one-file-system’

Skip subdirectories that are on different file systems from the one that the copy
started on. However, mount point directories are copied.

‘-Z’
‘--context[=context]’

Without a specified context, adjust the SELinux security context according to
the system default type for destination files, similarly to the restorecon com-
mand. The long form of this option with a specific context specified, will set the
context for newly created files only. With a specified context, if both SELinux
and SMACK are disabled, a warning is issued.This option is mutually exclusive
with the --preserve=context option, and overrides the --preserve=all and
-a options.

An exit status of zero indicates success, and a nonzero value indicates failure.

11.2 dd: Convert and copy a file

dd copies a file (from standard input to standard output, by default) with a changeable I/O
block size, while optionally performing conversions on it. Synopses:

dd [operand]...

dd option

The only options are --help and --version. See Chapter 2 [Common options], page 2.
dd accepts the following operands, whose syntax was inspired by the DD (data definition)
statement of OS/360 JCL.

‘if=file’ Read from file instead of standard input.

‘of=file’ Write to file instead of standard output. Unless ‘conv=notrunc’ is given, dd
truncates file to zero bytes (or the size specified with ‘seek=’).

‘ibs=bytes’
Set the input block size to bytes. This makes dd read bytes per block. The
default is 512 bytes.

‘obs=bytes’
Set the output block size to bytes. This makes dd write bytes per block. The
default is 512 bytes.

Chapter 11: Basic operations 107

‘bs=bytes’
Set both input and output block sizes to bytes. This makes dd read and write
bytes per block, overriding any ‘ibs’ and ‘obs’ settings. In addition, if no data-
transforming conv operand is specified, input is copied to the output as soon
as it’s read, even if it is smaller than the block size.

‘cbs=bytes’
Set the conversion block size to bytes. When converting variable-length records
to fixed-length ones (conv=block) or the reverse (conv=unblock), use bytes as
the fixed record length.

‘skip=n’ Skip n ‘ibs’-byte blocks in the input file before copying. If ‘iflag=skip_bytes’
is specified, n is interpreted as a byte count rather than a block count.

‘seek=n’ Skip n ‘obs’-byte blocks in the output file before copying. if
‘oflag=seek_bytes’ is specified, n is interpreted as a byte count
rather than a block count.

‘count=n’ Copy n ‘ibs’-byte blocks from the input file, instead of everything until the end
of the file. if ‘iflag=count_bytes’ is specified, n is interpreted as a byte count
rather than a block count. Note if the input may return short reads as could be
the case when reading from a pipe for example, ‘iflag=fullblock’ will ensure
that ‘count=’ corresponds to complete input blocks rather than the traditional
POSIX specified behavior of counting input read operations.

‘status=level’
Specify the amount of information printed. If this operand is given multiple
times, the last one takes precedence. The level value can be one of the following:

‘none’ Do not print any informational or warning messages to stderr. Error
messages are output as normal.

‘noxfer’ Do not print the final transfer rate and volume statistics that nor-
mally make up the last status line.

‘progress’
Print the transfer rate and volume statistics on stderr, when pro-
cessing each input block. Statistics are output on a single line at
most once every second, but updates can be delayed when waiting
on I/O.

Transfer information is normally output to stderr upon receipt of the ‘INFO’
signal or when dd exits, and defaults to the following form in the C locale:

7287+1 records in

116608+0 records out

59703296 bytes (60 MB, 57 MiB) copied, 0.0427974 s, 1.4 GB/s

The notation ‘w+p’ stands for w whole blocks and p partial blocks. A par-
tial block occurs when a read or write operation succeeds but transfers less
data than the block size. An additional line like ‘1 truncated record’ or ‘10
truncated records’ is output after the ‘records out’ line if ‘conv=block’ pro-
cessing truncated one or more input records.

Chapter 11: Basic operations 108

‘conv=conversion[,conversion]...’
Convert the file as specified by the conversion argument(s). (No spaces around
any comma(s).)

Conversions:

‘ascii’ Convert EBCDIC to ASCII, using the conversion table specified
by POSIX. This provides a 1:1 translation for all 256 bytes. This
implies ‘conv=unblock’; input is converted to ASCII before trailing
spaces are deleted.

‘ebcdic’ Convert ASCII to EBCDIC. This is the inverse of the ‘ascii’
conversion. This implies ‘conv=block’; trailing spaces are added
before being converted to EBCDIC.

‘ibm’ This acts like ‘conv=ebcdic’, except it uses the alternate conversion
table specified by POSIX. This is not a 1:1 translation, but reflects
common historical practice for ‘~’, ‘[’, and ‘]’.

The ‘ascii’, ‘ebcdic’, and ‘ibm’ conversions are mutually exclusive.
If you use any of these conversions, you should also use the ‘cbs=’
operand.

‘block’ For each line in the input, output ‘cbs’ bytes, replacing the input
newline with a space and truncating or padding input lines with
spaces as necessary.

‘unblock’ Remove any trailing spaces in each ‘cbs’-sized input block, and
append a newline.

The ‘block’ and ‘unblock’ conversions are mutually exclusive.

‘lcase’ Change uppercase letters to lowercase.

‘ucase’ Change lowercase letters to uppercase.

The ‘lcase’ and ‘ucase’ conversions are mutually exclusive.

‘sparse’ Try to seek rather than write NUL output blocks. On a file system
that supports sparse files, this will create sparse output when
extending the output file. Be careful when using this conversion
in conjunction with ‘conv=notrunc’ or ‘oflag=append’. With
‘conv=notrunc’, existing data in the output file corresponding
to NUL blocks from the input, will be untouched. With
‘oflag=append’ the seeks performed will be ineffective. Similarly,
when the output is a device rather than a file, NUL input blocks
are not copied, and therefore this conversion is most useful with
virtual or pre zeroed devices.

‘swab’ Swap every pair of input bytes. GNU dd, unlike others, works when
an odd number of bytes are read—the last byte is simply copied
(since there is nothing to swap it with).

‘sync’ Pad every input block to size of ‘ibs’ with trailing zero bytes. When
used with ‘block’ or ‘unblock’, pad with spaces instead of zero
bytes.

Chapter 11: Basic operations 109

The following “conversions” are really file flags and don’t affect internal pro-
cessing:

‘excl’ Fail if the output file already exists; dd must create the output file
itself.

‘nocreat’ Do not create the output file; the output file must already exist.

The ‘excl’ and ‘nocreat’ conversions are mutually exclusive.

‘notrunc’ Do not truncate the output file.

‘noerror’ Continue after read errors.

‘fdatasync’
Synchronize output data just before finishing. This forces a physical
write of output data.

‘fsync’ Synchronize output data and metadata just before finishing. This
forces a physical write of output data and metadata.

‘iflag=flag[,flag]...’
Access the input file using the flags specified by the flag argument(s). (No
spaces around any comma(s).)

‘oflag=flag[,flag]...’
Access the output file using the flags specified by the flag argument(s). (No
spaces around any comma(s).)

Here are the flags. Not every flag is supported on every operating system.

‘append’ Write in append mode, so that even if some other process is writ-
ing to this file, every dd write will append to the current contents
of the file. This flag makes sense only for output. If you com-
bine this flag with the ‘of=file’ operand, you should also specify
‘conv=notrunc’ unless you want the output file to be truncated
before being appended to.

‘cio’ Use concurrent I/O mode for data. This mode performs direct I/O
and drops the POSIX requirement to serialize all I/O to the same
file. A file cannot be opened in CIO mode and with a standard
open at the same time.

‘direct’ Use direct I/O for data, avoiding the buffer cache. Note that the
kernel may impose restrictions on read or write buffer sizes. For
example, with an ext4 destination file system and a Linux-based
kernel, using ‘oflag=direct’ will cause writes to fail with EINVAL

if the output buffer size is not a multiple of 512.

‘directory’
Fail unless the file is a directory. Most operating systems do not
allow I/O to a directory, so this flag has limited utility.

‘dsync’ Use synchronized I/O for data. For the output file, this forces a
physical write of output data on each write. For the input file,
this flag can matter when reading from a remote file that has been

Chapter 11: Basic operations 110

written to synchronously by some other process. Metadata (e.g.,
last-access and last-modified time) is not necessarily synchronized.

‘sync’ Use synchronized I/O for both data and metadata.

‘nocache’ Request to discard the system data cache for a file. When count=0
all cached data for the file is specified, otherwise the cache is
dropped for the processed portion of the file. Also when count=0,
failure to discard the cache is diagnosed and reflected in the exit
status.

Note data that is not already persisted to storage will not be dis-
carded from cache, so note the use of the ‘sync’ conversions in the
examples below, which are used to maximize the effectiveness of
the ‘nocache’ flag.

Here are some usage examples:

Advise to drop cache for whole file

dd if=ifile iflag=nocache count=0

Ensure drop cache for the whole file

dd of=ofile oflag=nocache conv=notrunc,fdatasync count=0

Advise to drop cache for part of file

Note the kernel will only consider complete and

already persisted pages.

dd if=ifile iflag=nocache skip=10 count=10 of=/dev/null

Stream data using just the read-ahead cache.

See also the ‘direct’ flag.

dd if=ifile of=ofile iflag=nocache oflag=nocache,sync

‘nonblock’
Use non-blocking I/O.

‘noatime’ Do not update the file’s access timestamp. See Chapter 28 [File
timestamps], page 235. Some older file systems silently ignore this
flag, so it is a good idea to test it on your files before relying on it.

‘noctty’ Do not assign the file to be a controlling terminal for dd. This
has no effect when the file is not a terminal. On many hosts (e.g.,
GNU/Linux hosts), this flag has no effect at all.

‘nofollow’
Do not follow symbolic links.

‘nolinks’ Fail if the file has multiple hard links.

‘binary’ Use binary I/O. This flag has an effect only on nonstandard plat-
forms that distinguish binary from text I/O.

‘text’ Use text I/O. Like ‘binary’, this flag has no effect on standard
platforms.

Chapter 11: Basic operations 111

‘fullblock’
Accumulate full blocks from input. The read system call may re-
turn early if a full block is not available. When that happens,
continue calling read to fill the remainder of the block. This flag
can be used only with iflag. This flag is useful with pipes for
example as they may return short reads. In that case, this flag is
needed to ensure that a ‘count=’ argument is interpreted as a block
count rather than a count of read operations.

‘count_bytes’
Interpret the ‘count=’ operand as a byte count, rather than a block
count, which allows specifying a length that is not a multiple of the
I/O block size. This flag can be used only with iflag.

‘skip_bytes’
Interpret the ‘skip=’ operand as a byte count, rather than a block
count, which allows specifying an offset that is not a multiple of
the I/O block size. This flag can be used only with iflag.

‘seek_bytes’
Interpret the ‘seek=’ operand as a byte count, rather than a block
count, which allows specifying an offset that is not a multiple of
the I/O block size. This flag can be used only with oflag.

These flags are not supported on all systems, and ‘dd’ rejects attempts to use
them when they are not supported. When reading from standard input or
writing to standard output, the ‘nofollow’ and ‘noctty’ flags should not be
specified, and the other flags (e.g., ‘nonblock’) can affect how other processes
behave with the affected file descriptors, even after dd exits.

The numeric-valued strings above (n and bytes) can be followed by a multiplier: ‘b’=512,
‘c’=1, ‘w’=2, ‘xm’=m, or any of the standard block size suffixes like ‘k’=1024 (see Section 2.3
[Block size], page 3).

Any block size you specify via ‘bs=’, ‘ibs=’, ‘obs=’, ‘cbs=’ should not be too large—
values larger than a few megabytes are generally wasteful or (as in the gigabyte..exabyte
case) downright counterproductive or error-inducing.

To process data that is at an offset or size that is not a multiple of the I/O block size,
you can use the ‘skip_bytes’, ‘seek_bytes’ and ‘count_bytes’ flags. Alternatively the
traditional method of separate dd invocations can be used. For example, the following shell
commands copy data in 512 KiB blocks between a disk and a tape, but do not save or
restore a 4 KiB label at the start of the disk:

disk=/dev/rdsk/c0t1d0s2

tape=/dev/rmt/0

Copy all but the label from disk to tape.

(dd bs=4k skip=1 count=0 && dd bs=512k) <$disk >$tape

Copy from tape back to disk, but leave the disk label alone.

(dd bs=4k seek=1 count=0 && dd bs=512k) <$tape >$disk

Chapter 11: Basic operations 112

For failing disks, other tools come with a great variety of extra functionality to ease
the saving of as much data as possible before the disk finally dies, e.g. GNU ddrescue

(https://www.gnu.org/software/ddrescue/). However, in some cases such a tool
is not available or the administrator feels more comfortable with the handling of dd.
As a simple rescue method, call dd as shown in the following example: the operand
‘conv=noerror,sync’ is used to continue after read errors and to pad out bad reads with
NULs, while ‘iflag=fullblock’ caters for short reads (which traditionally never occur on
disk based devices):

Rescue data from an (unmounted!) partition of a failing disk.

dd conv=noerror,sync iflag=fullblock </dev/sda1 > /mnt/rescue.img

Sending an ‘INFO’ signal (or ‘USR1’ signal where that is unavailable) to a running dd

process makes it print I/O statistics to standard error and then resume copying. In the
example below, dd is run in the background to copy 5GB of data. The kill command
makes it output intermediate I/O statistics, and when dd completes normally or is killed
by the SIGINT signal, it outputs the final statistics.

Ignore the signal so we never inadvertently terminate the dd child.

Note this is not needed when SIGINFO is available.

trap ’’ USR1

Run dd with the fullblock iflag to avoid short reads

which can be triggered by reception of signals.

dd iflag=fullblock if=/dev/zero of=/dev/null count=5000000 bs=1000 & pid=$!

Output stats every second.

while kill -s USR1 $pid 2>/dev/null; do sleep 1; done

The above script will output in the following format:

3441325+0 records in

3441325+0 records out

3441325000 bytes (3.4 GB, 3.2 GiB) copied, 1.00036 s, 3.4 GB/s

5000000+0 records in

5000000+0 records out

5000000000 bytes (5.0 GB, 4.7 GiB) copied, 1.44433 s, 3.5 GB/s

The ‘status=progress’ operand periodically updates the last line of the transfer statis-
tics above.

On systems lacking the ‘INFO’ signal dd responds to the ‘USR1’ signal instead, unless the
POSIXLY_CORRECT environment variable is set.

An exit status of zero indicates success, and a nonzero value indicates failure.

11.3 install: Copy files and set attributes

install copies files while setting their file mode bits and, if possible, their owner and group.
Synopses:

install [option]... [-T] source dest

install [option]... source... directory

install [option]... -t directory source...

https://www.gnu.org/software/ddrescue/
https://www.gnu.org/software/ddrescue/

Chapter 11: Basic operations 113

install [option]... -d directory...

• If two file names are given, install copies the first file to the second.

• If the --target-directory (-t) option is given, or failing that if the last file is a
directory and the --no-target-directory (-T) option is not given, install copies
each source file to the specified directory, using the sources’ names.

• If the --directory (-d) option is given, install creates each directory and any missing
parent directories. Parent directories are created with mode ‘u=rwx,go=rx’ (755),
regardless of the -m option or the current umask. See Section 27.5 [Directory Setuid
and Setgid], page 233, for how the set-user-ID and set-group-ID bits of parent directories
are inherited.

install is similar to cp, but allows you to control the attributes of destination files. It
is typically used in Makefiles to copy programs into their destination directories. It refuses
to copy files onto themselves.

install never preserves extended attributes (xattr).

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-b’
‘--backup[=method]’

See Section 2.2 [Backup options], page 3. Make a backup of each file that would
otherwise be overwritten or removed.

‘-C’
‘--compare’

Compare each pair of source and destination files, and if the destination has
identical content and any specified owner, group, permissions, and possibly
SELinux context, then do not modify the destination at all. Note this option
is best used in conjunction with --user, --group and --mode options, lest
install incorrectly determines the default attributes that installed files would
have (as it doesn’t consider setgid directories and POSIX default ACLs for
example). This could result in redundant copies or attributes that are not reset
to the correct defaults.

‘-c’ Ignored; for compatibility with old Unix versions of install.

‘-D’ Create any missing parent directories of dest, then copy source to dest. Explic-
itly specifying the --target-directory=dir will similarly ensure the presence
of that hierarchy before copying source arguments.

‘-d’
‘--directory’

Create any missing parent directories, giving them the default attributes. Then
create each given directory, setting their owner, group and mode as given on
the command line or to the defaults.

‘-g group’
‘--group=group’

Set the group ownership of installed files or directories to group. The default
is the process’s current group. group may be either a group name or a numeric
group ID.

Chapter 11: Basic operations 114

‘-m mode’
‘--mode=mode’

Set the file mode bits for the installed file or directory to mode, which can be
either an octal number, or a symbolic mode as in chmod, with ‘a=’ (no access
allowed to anyone) as the point of departure (see Chapter 27 [File permissions],
page 227). The default mode is ‘u=rwx,go=rx,a-s’—read, write, and execute
for the owner, read and execute for group and other, and with set-user-ID and
set-group-ID disabled. This default is not quite the same as ‘755’, since it
disables instead of preserving set-user-ID and set-group-ID on directories. See
Section 27.5 [Directory Setuid and Setgid], page 233.

‘-o owner’
‘--owner=owner’

If install has appropriate privileges (is run as root), set the ownership of
installed files or directories to owner. The default is root. owner may be either
a user name or a numeric user ID.

‘--preserve-context’
Preserve the SELinux security context of files and directories. Failure to pre-
serve the context in all of the files or directories will result in an exit status of
1. If SELinux is disabled then print a warning and ignore the option.

‘-p’
‘--preserve-timestamps’

Set the time of last access and the time of last modification of each installed
file to match those of each corresponding original file. When a file is installed
without this option, its last access and last modification timestamps are both
set to the time of installation. This option is useful if you want to use the last
modification timestamps of installed files to keep track of when they were last
built as opposed to when they were last installed.

‘-s’
‘--strip’ Strip the symbol tables from installed binary executables.

‘--strip-program=program’
Program used to strip binaries.

‘-S suffix’
‘--suffix=suffix’

Append suffix to each backup file made with -b. See Section 2.2 [Backup
options], page 3.

‘-t directory’
‘--target-directory=directory’

Specify the destination directory. See Section 2.8 [Target directory], page 8.Also
specifying the -D option will ensure the directory is present.

‘-T’
‘--no-target-directory’

Do not treat the last operand specially when it is a directory or a symbolic link
to a directory. See Section 2.8 [Target directory], page 8.

Chapter 11: Basic operations 115

‘-v’
‘--verbose’

Print the name of each file before copying it.

‘-Z’
‘--context[=context]’

Without a specified context, adjust the SELinux security context according
to the system default type for destination files, similarly to the restorecon

command. The long form of this option with a specific context specified, will
set the context for newly created files only. With a specified context, if both
SELinux and SMACK are disabled, a warning is issued.This option is mutually
exclusive with the --preserve-context option.

An exit status of zero indicates success, and a nonzero value indicates failure.

11.4 mv: Move (rename) files

mv moves or renames files (or directories). Synopses:

mv [option]... [-T] source dest

mv [option]... source... directory

mv [option]... -t directory source...

• If two file names are given, mv moves the first file to the second.

• If the --target-directory (-t) option is given, or failing that if the last file is a
directory and the --no-target-directory (-T) option is not given, mv moves each
source file to the specified directory, using the sources’ names.

mv can move any type of file from one file system to another. Prior to version 4.0 of
the fileutils, mv could move only regular files between file systems. For example, now mv

can move an entire directory hierarchy including special device files from one partition to
another. It first uses some of the same code that’s used by cp -a to copy the requested
directories and files, then (assuming the copy succeeded) it removes the originals. If the
copy fails, then the part that was copied to the destination partition is removed. If you were
to copy three directories from one partition to another and the copy of the first directory
succeeded, but the second didn’t, the first would be left on the destination partition and
the second and third would be left on the original partition.

mv always tries to copy extended attributes (xattr), which may include SELinux context,
ACLs or Capabilities. Upon failure all but ‘Operation not supported’ warnings are output.

If a destination file exists but is normally unwritable, standard input is a terminal, and
the -f or --force option is not given, mv prompts the user for whether to replace the file.
(You might own the file, or have write permission on its directory.) If the response is not
affirmative, the file is skipped.

Warning : Avoid specifying a source name with a trailing slash, when it might be a
symlink to a directory. Otherwise, mv may do something very surprising, since its behavior
depends on the underlying rename system call. On a system with a modern Linux-based
kernel, it fails with errno=ENOTDIR. However, on other systems (at least FreeBSD 6.1 and
Solaris 10) it silently renames not the symlink but rather the directory referenced by the
symlink. See Section 2.9 [Trailing slashes], page 9.

Chapter 11: Basic operations 116

Note: mv will only replace empty directories in the destination. Conflicting populated
directories are skipped with a diagnostic.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-b’
‘--backup[=method]’

See Section 2.2 [Backup options], page 3. Make a backup of each file that would
otherwise be overwritten or removed.

‘-f’
‘--force’ Do not prompt the user before removing a destination file. If you specify more

than one of the -i, -f, -n options, only the final one takes effect.

‘-i’
‘--interactive’

Prompt whether to overwrite each existing destination file, regardless of its
permissions. If the response is not affirmative, the file is skipped. If you specify
more than one of the -i, -f, -n options, only the final one takes effect.

‘-n’
‘--no-clobber’

Do not overwrite an existing file; silently do nothing instead. If you specify
more than one of the -i, -f, -n options, only the final one takes effect.This
option is mutually exclusive with -b or --backup option.

‘-u’
‘--update’

Do not move a non-directory that has an existing destination with the same
or newer modification timestamp. If the move is across file system boundaries,
the comparison is to the source timestamp truncated to the resolutions of the
destination file system and of the system calls used to update timestamps; this
avoids duplicate work if several ‘mv -u’ commands are executed with the same
source and destination. This option is ignored if the -n or --no-clobber option
is also specified.

‘-v’
‘--verbose’

Print the name of each file before moving it.

‘--strip-trailing-slashes’
Remove any trailing slashes from each source argument. See Section 2.9 [Trail-
ing slashes], page 9.

‘-S suffix’
‘--suffix=suffix’

Append suffix to each backup file made with -b. See Section 2.2 [Backup
options], page 3.

‘-t directory’
‘--target-directory=directory’

Specify the destination directory. See Section 2.8 [Target directory], page 8.

Chapter 11: Basic operations 117

‘-T’
‘--no-target-directory’

Do not treat the last operand specially when it is a directory or a symbolic link
to a directory. See Section 2.8 [Target directory], page 8.

‘-Z’
‘--context’

This option functions similarly to the restorecon command, by adjusting the
SELinux security context according to the system default type for destination
files and each created directory.

An exit status of zero indicates success, and a nonzero value indicates failure.

11.5 rm: Remove files or directories

rm removes each given file. By default, it does not remove directories. Synopsis:

rm [option]... [file]...

If the -I or --interactive=once option is given, and there are more than three files
or the -r, -R, or --recursive are given, then rm prompts the user for whether to proceed
with the entire operation. If the response is not affirmative, the entire command is aborted.

Otherwise, if a file is unwritable, standard input is a terminal, and the -f or --force
option is not given, or the -i or --interactive=always option is given, rm prompts the
user for whether to remove the file. If the response is not affirmative, the file is skipped.

Any attempt to remove a file whose last file name component is . or .. is rejected
without any prompting, as mandated by POSIX.

Warning : If you use rm to remove a file, it is usually possible to recover the contents of
that file. If you want more assurance that the contents are unrecoverable, consider using
shred.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-d’
‘--dir’ Remove the listed directories if they are empty.

‘-f’
‘--force’ Ignore nonexistent files and missing operands, and never prompt the user. Ig-

nore any previous --interactive (-i) option.

‘-i’ Prompt whether to remove each file. If the response is not affirmative, the
file is skipped. Ignore any previous --force (-f) option. Equivalent to
--interactive=always.

‘-I’ Prompt once whether to proceed with the command, if more than three files
are named or if a recursive removal is requested. Ignore any previous --force
(-f) option. Equivalent to --interactive=once.

‘--interactive [=when]’
Specify when to issue an interactive prompt. when may be omitted, or one of:

• never - Do not prompt at all.

Chapter 11: Basic operations 118

• once - Prompt once if more than three files are named or if a recursive
removal is requested. Equivalent to -I.

• always - Prompt for every file being removed. Equivalent to -i.

--interactive with no when is equivalent to --interactive=always.

‘--one-file-system’
When removing a hierarchy recursively, skip any directory that is on a file
system different from that of the corresponding command line argument. This
option is useful when removing a build “chroot” hierarchy, which normally
contains no valuable data. However, it is not uncommon to bind-mount /home
into such a hierarchy, to make it easier to use one’s start-up file. The catch
is that it’s easy to forget to unmount /home. Then, when you use rm -rf to
remove your normally throw-away chroot, that command will remove everything
under /home, too. Use the --one-file-system option, and it will warn about
and skip directories on other file systems. Of course, this will not save your
/home if it and your chroot happen to be on the same file system. See also
--preserve-root=all to protect command line arguments themselves.

‘--preserve-root [=all]’
Fail upon any attempt to remove the root directory, /, when used with the
--recursive option. This is the default behavior. See Section 2.11 [Treating /
specially], page 10. When ‘all’ is specified, reject any command line argument
that is not on the same file system as its parent.

‘--no-preserve-root’
Do not treat / specially when removing recursively. This option is not recom-
mended unless you really want to remove all the files on your computer. See
Section 2.11 [Treating / specially], page 10.

‘-r’
‘-R’
‘--recursive’

Remove the listed directories and their contents recursively.

‘-v’
‘--verbose’

Print the name of each file before removing it.

One common question is how to remove files whose names begin with a ‘-’. GNU rm,
like every program that uses the getopt function to parse its arguments, lets you use the
‘--’ option to indicate that all following arguments are non-options. To remove a file called
-f in the current directory, you could type either:

rm -- -f

or:

rm ./-f

The Unix rm program’s use of a single ‘-’ for this purpose predates the development of
the getopt standard syntax.

An exit status of zero indicates success, and a nonzero value indicates failure.

Chapter 11: Basic operations 119

11.6 shred: Remove files more securely

shred overwrites devices or files, to help prevent even extensive forensics from recovering
the data.

Ordinarily when you remove a file (see Section 11.5 [rm invocation], page 117), its data
and metadata are not actually destroyed. Only the file’s directory entry is removed, and
the file’s storage is reclaimed only when no process has the file open and no other directory
entry links to the file. And even if file’s data and metadata’s storage space is freed for
further reuse, there are undelete utilities that will attempt to reconstruct the file from the
data in freed storage, and that can bring the file back if the storage was not rewritten.

On a busy system with a nearly-full device, space can get reused in a few seconds. But
there is no way to know for sure. And although the undelete utilities and already-existing
processes require insider or superuser access, you may be wary of the superuser, of processes
running on your behalf, or of attackers that can physically access the storage device. So if
you have sensitive data, you may want to be sure that recovery is not possible by plausible
attacks like these.

The best way to remove something irretrievably is to destroy the media it’s on with acid,
melt it down, or the like. For cheap removable media this is often the preferred method.
However, some storage devices are expensive or are harder to destroy, so the shred utility
tries to achieve a similar effect non-destructively, by overwriting the file with non-sensitive
data.

Please note that shred relies on a crucial assumption: that the file system and hardware
overwrite data in place. Although this is common and is the traditional way to do things,
but many modern file system designs do not satisfy this assumption. Exceptions include:

• Log-structured or journaled file systems, such as ext3/ext4 (in data=journal mode),
Btrfs, NTFS, ReiserFS, XFS, ZFS, file systems supplied with AIX and Solaris, etc.,
when they are configured to journal data.

• File systems that write redundant data and carry on even if some writes fail, such as
RAID-based file systems.

• File systems that make snapshots, such as Network Appliance’s NFS server.

• File systems that cache in temporary locations, such as NFS version 3 clients.

• Compressed file systems.

For ext3 and ext4 file systems, shred is less effective when the file system is in
data=journal mode, which journals file data in addition to just metadata. In both
the data=ordered (default) and data=writeback modes, shred works as usual. The
ext3/ext4 journaling modes can be changed by adding the data=something option to the
mount options for a particular file system in the /etc/fstab file, as documented in the
mount man page (‘man mount’). Alternatively, if you know how large the journal is, you
can shred the journal by shredding enough file data so that the journal cycles around and
fills up with shredded data.

If you are not sure how your file system operates, then you should assume that it does
not overwrite data in place, which means shred cannot reliably operate on regular files in
your file system.

Chapter 11: Basic operations 120

Generally speaking, it is more reliable to shred a device than a file, since this bypasses file
system design issues mentioned above. However, devices are also problematic for shredding,
for reasons such as the following:

• Solid-state storage devices (SSDs) typically do wear leveling to prolong service life, and
this means writes are distributed to other blocks by the hardware, so “overwritten”
data blocks are still present in the underlying device.

• Most storage devices map out bad blocks invisibly to the application; if the bad blocks
contain sensitive data, shred won’t be able to destroy it.

• With some obsolete storage technologies, it may be possible to take (say) a floppy disk
back to a laboratory and use a lot of sensitive (and expensive) equipment to look for the
faint “echoes” of the original data underneath the overwritten data. With these older
technologies, if the file has been overwritten only once, it’s reputedly not even that
hard. Luckily, this kind of data recovery has become difficult, and there is no public
evidence that today’s higher-density storage devices can be analyzed in this way.

The shred command can use many overwrite passes, with data patterns chosen to
maximize the damage they do to the old data. By default the patterns are designed
for best effect on hard drives using now-obsolete technology; for newer devices, a single
pass should suffice. For more details, see the source code and Peter Gutmann’s paper
Secure Deletion of Data from Magnetic and Solid-State Memory (https://www.cs.
auckland.ac.nz/~pgut001/pubs/secure_del.html), from the proceedings of the
Sixth USENIX Security Symposium (San Jose, California, July 22–25, 1996).

shred makes no attempt to detect or report these problems, just as it makes no attempt
to do anything about backups. However, since it is more reliable to shred devices than
files, shred by default does not deallocate or remove the output file. This default is more
suitable for devices, which typically cannot be deallocated and should not be removed.

Finally, consider the risk of backups and mirrors. File system backups and remote mirrors
may contain copies of the file that cannot be removed, and that will allow a shredded file
to be recovered later. So if you keep any data you may later want to destroy using shred,
be sure that it is not backed up or mirrored.

shred [option]... file[...]

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-f’
‘--force’ Override file permissions if necessary to allow overwriting.

‘-n number’
‘--iterations=number’

By default, shred uses 3 passes of overwrite. You can reduce this to save time,
or increase it if you think it’s appropriate. After 25 passes all of the internal
overwrite patterns will have been used at least once.

‘--random-source=file’
Use file as a source of random data used to overwrite and to choose pass order-
ing. See Section 2.7 [Random sources], page 8.

https://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
https://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

Chapter 11: Basic operations 121

‘-s bytes’
‘--size=bytes’

Shred the first bytes bytes of the file. The default is to shred the whole file.
bytes can be followed by a size specification like ‘K’, ‘M’, or ‘G’ to specify a
multiple. See Section 2.3 [Block size], page 3.

‘-u’
‘--remove[=how]’

After shredding a file, deallocate it (if possible) and then remove it. If a file
has multiple links, only the named links will be removed. Often the file name
is less sensitive than the file data, in which case the optional how parameter,
supported with the long form option, gives control of how to more efficiently
remove each directory entry. The ‘unlink’ parameter will just use a standard
unlink call, ‘wipe’ will also first obfuscate bytes in the name, and ‘wipesync’
will also sync each obfuscated byte in the name to disk. Note ‘wipesync’ is the
default method, but can be expensive, requiring a sync for every character in
every file. This can become significant with many files, or is redundant if your
file system provides synchronous metadata updates.

‘-v’
‘--verbose’

Display to standard error all status updates as sterilization proceeds.

‘-x’
‘--exact’ By default, shred rounds the size of a regular file up to the next multiple of the

file system block size to fully erase the slack space in the last block of the file.
This space may contain portions of the current system memory on some systems
for example. Use --exact to suppress that behavior. Thus, by default if you
shred a 10-byte regular file on a system with 512-byte blocks, the resulting file
will be 512 bytes long. With this option, shred does not increase the apparent
size of the file.

‘-z’
‘--zero’ Normally, the last pass that shred writes is made up of random data. If this

would be conspicuous on your storage device (for example, because it looks
like encrypted data), or you just think it’s tidier, the --zero option adds an
additional overwrite pass with all zero bits. This is in addition to the number
of passes specified by the --iterations option.

You might use the following command to erase the file system you created on a USB
flash drive. This command typically takes several minutes, depending on the drive’s size
and write speed. On modern storage devices a single pass should be adequate, and will take
one third the time of the default three-pass approach.

shred -v -n 1 /dev/sdd1

Similarly, to erase all data on a selected partition of your hard disk, you could give a
command like the following.

1 pass, write pseudo-random data; 3x faster than the default

shred -v -n1 /dev/sda5

122

To be on the safe side, use at least one pass that overwrites using pseudo-random data.
I.e., don’t be tempted to use ‘-n0 --zero’, in case some disk controller optimizes the process
of writing blocks of all zeros, and thereby does not clear all bytes in a block. Some SSDs
may do just that.

A file of ‘-’ denotes standard output. The intended use of this is to shred a removed
temporary file. For example:

i=$(mktemp)

exec 3<>"$i"

rm -- "$i"

echo "Hello, world" >&3

shred - >&3

exec 3>-

However, the command ‘shred - >file’ does not shred the contents of file, since the
shell truncates file before invoking shred. Use the command ‘shred file’ or (if using a
Bourne-compatible shell) the command ‘shred - 1<>file’ instead.

An exit status of zero indicates success, and a nonzero value indicates failure.

123

12 Special file types

This chapter describes commands which create special types of files (and rmdir, which
removes directories, one special file type).

Although Unix-like operating systems have markedly fewer special file types than others,
not everything can be treated only as the undifferentiated byte stream of normal files. For
example, when a file is created or removed, the system must record this information, which
it does in a directory—a special type of file. Although you can read directories as normal
files, if you’re curious, in order for the system to do its job it must impose a structure, a
certain order, on the bytes of the file. Thus it is a “special” type of file.

Besides directories, other special file types include named pipes (FIFOs), symbolic links,
sockets, and so-called special files.

12.1 link: Make a hard link via the link syscall

link creates a single hard link at a time. It is a minimalist interface to the system-provided
link function. See Section “Hard Links” in The GNU C Library Reference Manual. It
avoids the bells and whistles of the more commonly-used ln command (see Section 12.2 [ln
invocation], page 123). Synopsis:

link filename linkname

filename must specify an existing file, and linkname must specify a nonexistent entry in
an existing directory. link simply calls link (filename, linkname) to create the link.

On a GNU system, this command acts like ‘ln --directory --no-target-directory

filename linkname’. However, the --directory and --no-target-directory options are
not specified by POSIX, and the link command is more portable in practice.

If filename is a symbolic link, it is unspecified whether linkname will be a hard link to
the symbolic link or to the target of the symbolic link. Use ln -P or ln -L to specify which
behavior is desired.

An exit status of zero indicates success, and a nonzero value indicates failure.

12.2 ln: Make links between files

ln makes links between files. By default, it makes hard links; with the -s option, it makes
symbolic (or soft) links. Synopses:

ln [option]... [-T] target linkname

ln [option]... target

ln [option]... target... directory

ln [option]... -t directory target...

• If two file names are given, ln creates a link to the first file from the second.

• If one target is given, ln creates a link to that file in the current directory.

• If the --target-directory (-t) option is given, or failing that if the last file is a
directory and the --no-target-directory (-T) option is not given, ln creates a link
to each target file in the specified directory, using the targets’ names.

Chapter 12: Special file types 124

Normally ln does not replace existing files. Use the --force (-f) option to replace
them unconditionally, the --interactive (-i) option to replace them conditionally, and
the --backup (-b) option to rename them. Unless the --backup (-b) option is used there
is no brief moment when the destination does not exist; this is an extension to POSIX.

A hard link is another name for an existing file; the link and the original are indistin-
guishable. Technically speaking, they share the same inode, and the inode contains all the
information about a file—indeed, it is not incorrect to say that the inode is the file. Most
systems prohibit making a hard link to a directory; on those where it is allowed, only the
super-user can do so (and with caution, since creating a cycle will cause problems to many
other utilities). Hard links cannot cross file system boundaries. (These restrictions are not
mandated by POSIX, however.)

Symbolic links (symlinks for short), on the other hand, are a special file type (which not
all kernels support: System V release 3 (and older) systems lack symlinks) in which the link
file actually refers to a different file, by name. When most operations (opening, reading,
writing, and so on) are passed the symbolic link file, the kernel automatically dereferences
the link and operates on the target of the link. But some operations (e.g., removing) work
on the link file itself, rather than on its target. The owner and group of a symlink are not
significant to file access performed through the link, but do have implications on deleting a
symbolic link from a directory with the restricted deletion bit set. On the GNU system, the
mode of a symlink has no significance and cannot be changed, but on some BSD systems,
the mode can be changed and will affect whether the symlink will be traversed in file name
resolution. See Section “Symbolic Links” in The GNU C Library Reference Manual.

Symbolic links can contain arbitrary strings; a dangling symlink occurs when the string
in the symlink does not resolve to a file. There are no restrictions against creating dangling
symbolic links. There are trade-offs to using absolute or relative symlinks. An absolute
symlink always points to the same file, even if the directory containing the link is moved.
However, if the symlink is visible from more than one machine (such as on a networked
file system), the file pointed to might not always be the same. A relative symbolic link is
resolved in relation to the directory that contains the link, and is often useful in referring
to files on the same device without regards to what name that device is mounted on when
accessed via networked machines.

When creating a relative symlink in a different location than the current directory, the
resolution of the symlink will be different than the resolution of the same string from the
current directory. Therefore, many users prefer to first change directories to the location
where the relative symlink will be created, so that tab-completion or other file resolution
will find the same target as what will be placed in the symlink.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-b’
‘--backup[=method]’

See Section 2.2 [Backup options], page 3. Make a backup of each file that would
otherwise be overwritten or removed.

Chapter 12: Special file types 125

‘-d’
‘-F’
‘--directory’

Allow users with appropriate privileges to attempt to make hard links to di-
rectories. However, note that this will probably fail due to system restrictions,
even for the super-user.

‘-f’
‘--force’ Remove existing destination files.

‘-i’
‘--interactive’

Prompt whether to remove existing destination files.

‘-L’
‘--logical’

If -s is not in effect, and the source file is a symbolic link, create the hard link
to the file referred to by the symbolic link, rather than the symbolic link itself.

‘-n’
‘--no-dereference’

Do not treat the last operand specially when it is a symbolic link to a directory.
Instead, treat it as if it were a normal file.

When the destination is an actual directory (not a symlink to one), there is
no ambiguity. The link is created in that directory. But when the specified
destination is a symlink to a directory, there are two ways to treat the user’s
request. ln can treat the destination just as it would a normal directory and
create the link in it. On the other hand, the destination can be viewed as a
non-directory—as the symlink itself. In that case, ln must delete or backup
that symlink before creating the new link. The default is to treat a destination
that is a symlink to a directory just like a directory.

This option is weaker than the --no-target-directory (-T) option, so it has
no effect if both options are given.

‘-P’
‘--physical’

If -s is not in effect, and the source file is a symbolic link, create the hard link to
the symbolic link itself. On platforms where this is not supported by the kernel,
this option creates a symbolic link with identical contents; since symbolic link
contents cannot be edited, any file name resolution performed through either
link will be the same as if a hard link had been created.

‘-r’
‘--relative’

Make symbolic links relative to the link location.

Example:

ln -srv /a/file /tmp

’/tmp/file’ -> ’../a/file’

Relative symbolic links are generated based on their canonicalized containing
directory, and canonicalized targets. I.e., all symbolic links in these file names

Chapter 12: Special file types 126

will be resolved. See Section 18.5 [realpath invocation], page 172, which gives
greater control over relative file name generation, as demonstrated in the fol-
lowing example:

ln--relative() {

test "$1" = --no-symlinks && { nosym=$1; shift; }

target="$1";

test -d "$2" && link="$2/." || link="$2"

rtarget="$(realpath $nosym -m "$target" \

--relative-to "$(dirname "$link")")"

ln -s -v "$rtarget" "$link"

}

‘-s’
‘--symbolic’

Make symbolic links instead of hard links. This option merely produces an
error message on systems that do not support symbolic links.

‘-S suffix’
‘--suffix=suffix’

Append suffix to each backup file made with -b. See Section 2.2 [Backup
options], page 3.

‘-t directory’
‘--target-directory=directory’

Specify the destination directory. See Section 2.8 [Target directory], page 8.

‘-T’
‘--no-target-directory’

Do not treat the last operand specially when it is a directory or a symbolic link
to a directory. See Section 2.8 [Target directory], page 8.

‘-v’
‘--verbose’

Print the name of each file after linking it successfully.

If -L and -P are both given, the last one takes precedence. If -s is also given, -L and
-P are silently ignored. If neither option is given, then this implementation defaults to -P

if the system link supports hard links to symbolic links (such as the GNU system), and -L

if link follows symbolic links (such as on BSD).

An exit status of zero indicates success, and a nonzero value indicates failure.Examples:

Bad Example:

Create link ../a pointing to a in that directory.

Not really useful because it points to itself.

ln -s a ..

Better Example:

Change to the target before creating symlinks to avoid being confused.

cd ..

Chapter 12: Special file types 127

ln -s adir/a .

Bad Example:

Hard coded file names don’t move well.

ln -s $(pwd)/a /some/dir/

Better Example:

Relative file names survive directory moves and also

work across networked file systems.

ln -s afile anotherfile

ln -s ../adir/afile yetanotherfile

12.3 mkdir: Make directories

mkdir creates directories with the specified names. Synopsis:

mkdir [option]... name...

mkdir creates each directory name in the order given. It reports an error if name already
exists, unless the -p option is given and name is a directory.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-m mode’
‘--mode=mode’

Set the file permission bits of created directories to mode, which uses the same
syntax as in chmod and uses ‘a=rwx’ (read, write and execute allowed for every-
one) for the point of the departure. See Chapter 27 [File permissions], page 227.

Normally the directory has the desired file mode bits at the moment it is created.
As a GNU extension, mode may also mention special mode bits, but in this
case there may be a temporary window during which the directory exists but
its special mode bits are incorrect. See Section 27.5 [Directory Setuid and
Setgid], page 233, for how the set-user-ID and set-group-ID bits of directories
are inherited unless overridden in this way.

‘-p’
‘--parents’

Make any missing parent directories for each argument, setting their file per-
mission bits to the umask modified by ‘u+wx’. Ignore existing parent directories,
and do not change their file permission bits.

To set the file permission bits of any newly-created parent directories to a value
that includes ‘u+wx’, you can set the umask before invoking mkdir. For example,
if the shell command ‘(umask u=rwx,go=rx; mkdir -p P/Q)’ creates the parent
P it sets the parent’s permission bits to ‘u=rwx,go=rx’. To set a parent’s special
mode bits as well, you can invoke chmod after mkdir. See Section 27.5 [Directory
Setuid and Setgid], page 233, for how the set-user-ID and set-group-ID bits of
newly-created parent directories are inherited.

Chapter 12: Special file types 128

‘-v’
‘--verbose’

Print a message for each created directory. This is most useful with --parents.

‘-Z’
‘--context[=context]’

Without a specified context, adjust the SELinux security context according
to the system default type for destination files, similarly to the restorecon

command. The long form of this option with a specific context specified, will
set the context for newly created files only. With a specified context, if both
SELinux and SMACK are disabled, a warning is issued.

An exit status of zero indicates success, and a nonzero value indicates failure.

12.4 mkfifo: Make FIFOs (named pipes)

mkfifo creates FIFOs (also called named pipes) with the specified names. Synopsis:

mkfifo [option] name...

A FIFO is a special file type that permits independent processes to communicate. One
process opens the FIFO file for writing, and another for reading, after which data can flow
as with the usual anonymous pipe in shells or elsewhere.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-m mode’
‘--mode=mode’

Set the mode of created FIFOs to mode, which is symbolic as in chmod and
uses ‘a=rw’ (read and write allowed for everyone) for the point of departure.
mode should specify only file permission bits. See Chapter 27 [File permissions],
page 227.

‘-Z’
‘--context[=context]’

Without a specified context, adjust the SELinux security context according
to the system default type for destination files, similarly to the restorecon

command. The long form of this option with a specific context specified, will
set the context for newly created files only. With a specified context, if both
SELinux and SMACK are disabled, a warning is issued.

An exit status of zero indicates success, and a nonzero value indicates failure.

12.5 mknod: Make block or character special files

mknod creates a FIFO, character special file, or block special file with the specified name.
Synopsis:

mknod [option]... name type [major minor]

Unlike the phrase “special file type” above, the term special file has a technical meaning
on Unix: something that can generate or receive data. Usually this corresponds to a physical

Chapter 12: Special file types 129

piece of hardware, e.g., a printer or a disk. (These files are typically created at system-
configuration time.) The mknod command is what creates files of this type. Such devices
can be read either a character at a time or a “block” (many characters) at a time, hence
we say there are block special files and character special files.

Due to shell aliases and built-in mknod functions, using an unadorned mknod interactively
or in a script may get you different functionality than that described here. Invoke it via
env (i.e., env mknod ...) to avoid interference from the shell.

The arguments after name specify the type of file to make:

‘p’ for a FIFO

‘b’ for a block special file

‘c’ for a character special file

When making a block or character special file, the major and minor device numbers
must be given after the file type. If a major or minor device number begins with ‘0x’ or
‘0X’, it is interpreted as hexadecimal; otherwise, if it begins with ‘0’, as octal; otherwise, as
decimal.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-m mode’
‘--mode=mode’

Set the mode of created files to mode, which is symbolic as in chmod and uses
‘a=rw’ as the point of departure. mode should specify only file permission bits.
See Chapter 27 [File permissions], page 227.

‘-Z’
‘--context[=context]’

Without a specified context, adjust the SELinux security context according
to the system default type for destination files, similarly to the restorecon

command. The long form of this option with a specific context specified, will
set the context for newly created files only. With a specified context, if both
SELinux and SMACK are disabled, a warning is issued.

An exit status of zero indicates success, and a nonzero value indicates failure.

12.6 readlink: Print value of a symlink or canonical file
name

readlink may work in one of two supported modes:

‘Readlink mode’
readlink outputs the value of the given symbolic links. If readlink is invoked
with an argument other than the name of a symbolic link, it produces no output
and exits with a nonzero exit code.

‘Canonicalize mode’
readlink outputs the absolute name of the given files which contain no .,
.. components nor any repeated separators (/) or symbolic links. Note the

Chapter 12: Special file types 130

realpath command is the preferred command to use for canonicalization. See
Section 18.5 [realpath invocation], page 172.

readlink [option]... file...

By default, readlink operates in readlink mode.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-f’
‘--canonicalize’

Activate canonicalize mode. If any component of the file name except the last
one is missing or unavailable, readlink produces no output and exits with a
nonzero exit code. A trailing slash is ignored.

‘-e’
‘--canonicalize-existing’

Activate canonicalize mode. If any component is missing or unavailable,
readlink produces no output and exits with a nonzero exit code. A trailing
slash requires that the name resolve to a directory.

‘-m’
‘--canonicalize-missing’

Activate canonicalize mode. If any component is missing or unavailable,
readlink treats it as a directory.

‘-n’
‘--no-newline’

Do not print the output delimiter, when a single file is specified. Print a warning
if specified along with multiple files.

‘-s’
‘-q’
‘--silent’
‘--quiet’ Suppress most error messages. On by default.

‘-v’
‘--verbose’

Report error messages.

‘-z’
‘--zero’ Output a zero byte (ASCII NUL) at the end of each line, rather than a newline.

This option enables other programs to parse the output even when that output
would contain data with embedded newlines.

The readlink utility first appeared in OpenBSD 2.1.

The realpath command without options, operates like readlink in canonicalize mode.

An exit status of zero indicates success, and a nonzero value indicates failure.

Chapter 12: Special file types 131

12.7 rmdir: Remove empty directories

rmdir removes empty directories. Synopsis:

rmdir [option]... directory...

If any directory argument does not refer to an existing empty directory, it is an error.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘--ignore-fail-on-non-empty’
Ignore each failure to remove a directory that is solely because the directory is
non-empty.

‘-p’
‘--parents’

Remove directory, then try to remove each component of directory. So,
for example, ‘rmdir -p a/b/c’ is similar to ‘rmdir a/b/c a/b a’. As such,
it fails if any of those directories turns out not to be empty. Use the
--ignore-fail-on-non-empty option to make it so such a failure does not
evoke a diagnostic and does not cause rmdir to exit unsuccessfully.

‘-v’
‘--verbose’

Give a diagnostic for each successful removal. directory is removed.

See Section 11.5 [rm invocation], page 117, for how to remove non-empty directories
(recursively).

An exit status of zero indicates success, and a nonzero value indicates failure.

12.8 unlink: Remove files via the unlink syscall

unlink deletes a single specified file name. It is a minimalist interface to the system-
provided unlink function. See Section “Deleting Files” in The GNU C Library Reference
Manual. Synopsis: It avoids the bells and whistles of the more commonly-used rm command
(see Section 11.5 [rm invocation], page 117).

unlink filename

On some systems unlink can be used to delete the name of a directory. On others, it
can be used that way only by a privileged user. In the GNU system unlink can never delete
the name of a directory.

The unlink command honors the --help and --version options. To remove a file
whose name begins with ‘-’, prefix the name with ‘./’, e.g., ‘unlink ./--help’.

An exit status of zero indicates success, and a nonzero value indicates failure.

132

13 Changing file attributes

A file is not merely its contents, a name, and a file type (see Chapter 12 [Special file types],
page 123). A file also has an owner (a user ID), a group (a group ID), permissions (what the
owner can do with the file, what people in the group can do, and what everyone else can do),
various timestamps, and other information. Collectively, we call these a file’s attributes.

These commands change file attributes.

13.1 chown: Change file owner and group

chown changes the user and/or group ownership of each given file to new-owner or to the
user and group of an existing reference file. Synopsis:

chown [option]... {new-owner | --reference=ref_file} file...

If used, new-owner specifies the new owner and/or group as follows (with no embedded
white space):

[owner] [: [group]]

Specifically:

owner If only an owner (a user name or numeric user ID) is given, that user is made
the owner of each given file, and the files’ group is not changed.

owner‘:’group
If the owner is followed by a colon and a group (a group name or numeric group
ID), with no spaces between them, the group ownership of the files is changed
as well (to group).

owner‘:’ If a colon but no group name follows owner, that user is made the owner of the
files and the group of the files is changed to owner’s login group.

‘:’group If the colon and following group are given, but the owner is omitted, only the
group of the files is changed; in this case, chown performs the same function as
chgrp.

‘:’ If only a colon is given, or if new-owner is empty, neither the owner nor the
group is changed.

If owner or group is intended to represent a numeric user or group ID, then you may
specify it with a leading ‘+’. See Section 2.6 [Disambiguating names and IDs], page 7.

Some older scripts may still use ‘.’ in place of the ‘:’ separator. POSIX 1003.1-2001
(see Section 2.13 [Standards conformance], page 11) does not require support for that, but
for backward compatibility GNU chown supports ‘.’ so long as no ambiguity results. New
scripts should avoid the use of ‘.’ because it is not portable, and because it has undesirable
results if the entire owner‘.’group happens to identify a user whose name contains ‘.’.

It is system dependent whether a user can change the group to an arbitrary one, or
the more portable behavior of being restricted to setting a group of which the user is a
member.The chown command sometimes clears the set-user-ID or set-group-ID permission
bits. This behavior depends on the policy and functionality of the underlying chown system
call, which may make system-dependent file mode modifications outside the control of the
chown command. For example, the chown command might not affect those bits when

Chapter 13: Changing file attributes 133

invoked by a user with appropriate privileges, or when the bits signify some function other
than executable permission (e.g., mandatory locking). When in doubt, check the underlying
system behavior.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-c’
‘--changes’

Verbosely describe the action for each file whose ownership actually changes.

‘-f’
‘--silent’
‘--quiet’ Do not print error messages about files whose ownership cannot be changed.

‘--from=old-owner’
Change a file’s ownership only if it has current attributes specified by old-owner.
old-owner has the same form as new-owner described above. This option is
useful primarily from a security standpoint in that it narrows considerably the
window of potential abuse. For example, to reflect a user ID numbering change
for one user’s files without an option like this, root might run

find / -owner OLDUSER -print0 | xargs -0 chown -h NEWUSER

But that is dangerous because the interval between when the find tests the
existing file’s owner and when the chown is actually run may be quite large.
One way to narrow the gap would be to invoke chown for each file as it is found:

find / -owner OLDUSER -exec chown -h NEWUSER {} \;

But that is very slow if there are many affected files. With this option, it is
safer (the gap is narrower still) though still not perfect:

chown -h -R --from=OLDUSER NEWUSER /

‘--dereference’
Do not act on symbolic links themselves but rather on what they point to. This
is the default when not operating recursively.

Combining this dereferencing option with the --recursive option may create
a security risk: During the traversal of the directory tree, an attacker may be
able to introduce a symlink to an arbitrary target; when the tool reaches that,
the operation will be performed on the target of that symlink, possibly allowing
the attacker to escalate privileges.

‘-h’
‘--no-dereference’

Act on symbolic links themselves instead of what they point to. This mode
relies on the lchown system call. On systems that do not provide the lchown

system call, chown fails when a file specified on the command line is a symbolic
link. By default, no diagnostic is issued for symbolic links encountered during
a recursive traversal, but see --verbose.

‘--preserve-root’
Fail upon any attempt to recursively change the root directory, /. Without
--recursive, this option has no effect. See Section 2.11 [Treating / specially],
page 10.

Chapter 13: Changing file attributes 134

‘--no-preserve-root’
Cancel the effect of any preceding --preserve-root option. See Section 2.11
[Treating / specially], page 10.

‘--reference=ref_file’
Change the user and group of each file to be the same as those of ref file. If
ref file is a symbolic link, do not use the user and group of the symbolic link,
but rather those of the file it refers to.

‘-v’
‘--verbose’

Output a diagnostic for every file processed. If a symbolic link is encountered
during a recursive traversal on a system without the lchown system call, and
--no-dereference is in effect, then issue a diagnostic saying neither the sym-
bolic link nor its referent is being changed.

‘-R’
‘--recursive’

Recursively change ownership of directories and their contents.

‘-H’ If --recursive (-R) is specified and a command line argument is a symbolic
link to a directory, traverse it.See Section 2.10 [Traversing symlinks], page 10.

‘-L’ In a recursive traversal, traverse every symbolic link to a directory that is
encountered.

Combining this dereferencing option with the --recursive option may create a
security risk: During the traversal of the directory tree, an attacker may be able
to introduce a symlink to an arbitrary target; when the tool reaches that, the
operation will be performed on the target of that symlink, possibly allowing the
attacker to escalate privileges. See Section 2.10 [Traversing symlinks], page 10.

‘-P’ Do not traverse any symbolic links. This is the default if none of -H, -L, or -P
is specified.See Section 2.10 [Traversing symlinks], page 10.

An exit status of zero indicates success, and a nonzero value indicates failure.Examples:

Change the owner of /u to "root".

chown root /u

Likewise, but also change its group to "staff".

chown root:staff /u

Change the owner of /u and subfiles to "root".

chown -hR root /u

13.2 chgrp: Change group ownership

chgrp changes the group ownership of each given file to group (which can be either a group
name or a numeric group ID) or to the group of an existing reference file. See Section 13.1
[chown invocation], page 132. Synopsis:

chgrp [option]... {group | --reference=ref_file} file...

Chapter 13: Changing file attributes 135

If group is intended to represent a numeric group ID, then you may specify it with a
leading ‘+’. See Section 2.6 [Disambiguating names and IDs], page 7.

It is system dependent whether a user can change the group to an arbitrary one, or
the more portable behavior of being restricted to setting a group of which the user is a
member.The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-c’
‘--changes’

Verbosely describe the action for each file whose group actually changes.

‘-f’
‘--silent’
‘--quiet’ Do not print error messages about files whose group cannot be changed.

‘--dereference’
Do not act on symbolic links themselves but rather on what they point to. This
is the default when not operating recursively.

Combining this dereferencing option with the --recursive option may create
a security risk: During the traversal of the directory tree, an attacker may be
able to introduce a symlink to an arbitrary target; when the tool reaches that,
the operation will be performed on the target of that symlink, possibly allowing
the attacker to escalate privileges.

‘-h’
‘--no-dereference’

Act on symbolic links themselves instead of what they point to. This mode
relies on the lchown system call. On systems that do not provide the lchown

system call, chgrp fails when a file specified on the command line is a symbolic
link. By default, no diagnostic is issued for symbolic links encountered during
a recursive traversal, but see --verbose.

‘--preserve-root’
Fail upon any attempt to recursively change the root directory, /. Without
--recursive, this option has no effect. See Section 2.11 [Treating / specially],
page 10.

‘--no-preserve-root’
Cancel the effect of any preceding --preserve-root option. See Section 2.11
[Treating / specially], page 10.

‘--reference=ref_file’
Change the group of each file to be the same as that of ref file. If ref file is a
symbolic link, do not use the group of the symbolic link, but rather that of the
file it refers to.

‘-v’
‘--verbose’

Output a diagnostic for every file processed. If a symbolic link is encountered
during a recursive traversal on a system without the lchown system call, and
--no-dereference is in effect, then issue a diagnostic saying neither the sym-
bolic link nor its referent is being changed.

Chapter 13: Changing file attributes 136

‘-R’
‘--recursive’

Recursively change the group ownership of directories and their contents.

‘-H’ If --recursive (-R) is specified and a command line argument is a symbolic
link to a directory, traverse it.See Section 2.10 [Traversing symlinks], page 10.

‘-L’ In a recursive traversal, traverse every symbolic link to a directory that is
encountered.

Combining this dereferencing option with the --recursive option may create a
security risk: During the traversal of the directory tree, an attacker may be able
to introduce a symlink to an arbitrary target; when the tool reaches that, the
operation will be performed on the target of that symlink, possibly allowing the
attacker to escalate privileges. See Section 2.10 [Traversing symlinks], page 10.

‘-P’ Do not traverse any symbolic links. This is the default if none of -H, -L, or -P
is specified.See Section 2.10 [Traversing symlinks], page 10.

An exit status of zero indicates success, and a nonzero value indicates failure.Examples:

Change the group of /u to "staff".

chgrp staff /u

Change the group of /u and subfiles to "staff".

chgrp -hR staff /u

13.3 chmod: Change access permissions

chmod changes the access permissions of the named files. Synopsis:

chmod [option]... {mode | --reference=ref_file} file...

chmod never changes the permissions of symbolic links, since the chmod system call
cannot change their permissions. This is not a problem since the permissions of symbolic
links are never used. However, for each symbolic link listed on the command line, chmod
changes the permissions of the pointed-to file. In contrast, chmod ignores symbolic links
encountered during recursive directory traversals.

Only a process whose effective user ID matches the user ID of the file, or a process with
appropriate privileges, is permitted to change the file mode bits of a file.

A successful use of chmod clears the set-group-ID bit of a regular file if the file’s group
ID does not match the user’s effective group ID or one of the user’s supplementary group
IDs, unless the user has appropriate privileges. Additional restrictions may cause the set-
user-ID and set-group-ID bits of mode or ref file to be ignored. This behavior depends on
the policy and functionality of the underlying chmod system call. When in doubt, check the
underlying system behavior.

If used, mode specifies the new file mode bits. For details, see the section on Chapter 27
[File permissions], page 227. If you really want mode to have a leading ‘-’, you should use
-- first, e.g., ‘chmod -- -w file’. Typically, though, ‘chmod a-w file’ is preferable, and
chmod -w file (without the --) complains if it behaves differently from what ‘chmod a-w

file’ would do.

Chapter 13: Changing file attributes 137

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-c’
‘--changes’

Verbosely describe the action for each file whose permissions actually changes.

‘-f’
‘--silent’
‘--quiet’ Do not print error messages about files whose permissions cannot be changed.

‘--preserve-root’
Fail upon any attempt to recursively change the root directory, /. Without
--recursive, this option has no effect. See Section 2.11 [Treating / specially],
page 10.

‘--no-preserve-root’
Cancel the effect of any preceding --preserve-root option. See Section 2.11
[Treating / specially], page 10.

‘-v’
‘--verbose’

Verbosely describe the action or non-action taken for every file.

‘--reference=ref_file’
Change the mode of each file to be the same as that of ref file. See Chapter 27
[File permissions], page 227. If ref file is a symbolic link, do not use the mode
of the symbolic link, but rather that of the file it refers to.

‘-R’
‘--recursive’

Recursively change permissions of directories and their contents.

An exit status of zero indicates success, and a nonzero value indicates failure.Examples:
Change file permissions of FOO to be world readable

and user writable, with no other permissions.

chmod 644 foo

chmod a=r,u+w foo

Add user and group execute permissions to FOO.

chmod +110 file

chmod ug+x file

Set file permissions of DIR and subsidiary files to

be the umask default, assuming execute permissions for

directories and for files already executable.

chmod -R a=,+rwX dir

13.4 touch: Change file timestamps

touch changes the access and/or modification timestamps of the specified files. Synopsis:

touch [option]... file...

Any file argument that does not exist is created empty, unless option --no-create (-c)
or --no-dereference (-h) was in effect.

Chapter 13: Changing file attributes 138

A file argument string of ‘-’ is handled specially and causes touch to change the times
of the file associated with standard output.

By default, touch sets file timestamps to the current time. Because touch acts on its
operands left to right, the resulting timestamps of earlier and later operands may disagree.

When setting file timestamps to the current time, touch can change the timestamps for
files that the user does not own but has write permission for. Otherwise, the user must own
the files. Some older systems have a further restriction: the user must own the files unless
both the access and modification timestamps are being set to the current time.

The touch command cannot set a file’s status change timestamp to a user-specified value,
and cannot change the file’s birth time (if supported) at all. Also, touch has issues similar
to those affecting all programs that update file timestamps. For example, touch may set
a file’s timestamp to a value that differs slightly from the requested time. See Chapter 28
[File timestamps], page 235.

Timestamps assume the time zone rules specified by the TZ environment variable, or by
the system default rules if TZ is not set. See Section “Specifying the Time Zone with TZ” in
The GNU C Library Reference Manual. You can avoid ambiguities during daylight saving
transitions by using UTC timestamps.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-a’
‘--time=atime’
‘--time=access’
‘--time=use’

Change the access timestamp only. See Chapter 28 [File timestamps], page 235.

‘-c’
‘--no-create’

Do not warn about or create files that do not exist.

‘-d time’
‘--date=time’

Use time instead of the current time. It can contain month names, time
zones, ‘am’ and ‘pm’, ‘yesterday’, etc. For example, --date="2004-02-27

14:19:13.489392193 +0530" specifies the instant of time that is 489,392,193
nanoseconds after February 27, 2004 at 2:19:13 PM in a time zone that is 5 hours
and 30 minutes east of UTC. See Chapter 29 [Date input formats], page 236.
File systems that do not support high-resolution timestamps silently ignore any
excess precision here.

‘-f’ Ignored; for compatibility with BSD versions of touch.

‘-h’
‘--no-dereference’

Attempt to change the timestamps of a symbolic link, rather than what the link
refers to. When using this option, empty files are not created, but option -c

must also be used to avoid warning about files that do not exist. Not all systems
support changing the timestamps of symlinks, since underlying system support
for this action was not required until POSIX 2008. Also, on some systems,

Chapter 13: Changing file attributes 139

the mere act of examining a symbolic link changes the access timestamp, such
that only changes to the modification timestamp will persist long enough to be
observable. When coupled with option -r, a reference timestamp is taken from
a symbolic link rather than the file it refers to.

‘-m’
‘--time=mtime’
‘--time=modify’

Change the modification timestamp only.

‘-r file’
‘--reference=file’

Use the times of the reference file instead of the current time. If this option is
combined with the --date=time (-d time) option, the reference file’s time is
the origin for any relative times given, but is otherwise ignored. For example,
‘-r foo -d ’-5 seconds’’ specifies a timestamp equal to five seconds before
the corresponding timestamp for foo. If file is a symbolic link, the reference
timestamp is taken from the target of the symlink, unless -h was also in effect.

‘-t [[cc]yy]mmddhhmm[.ss]’
Use the argument (optional four-digit or two-digit years, months, days, hours,
minutes, optional seconds) instead of the current time. If the year is specified
with only two digits, then cc is 20 for years in the range 0 . . . 68, and 19
for years in 69 . . . 99. If no digits of the year are specified, the argument is
interpreted as a date in the current year. On the atypical systems that support
leap seconds, ss may be ‘60’.

On systems predating POSIX 1003.1-2001, touch supports an obsolete syntax, as fol-
lows. If no timestamp is given with any of the -d, -r, or -t options, and if there are
two or more files and the first file is of the form ‘mmddhhmm[yy]’ and this would be a
valid argument to the -t option (if the yy, if any, were moved to the front), and if the
represented year is in the range 1969–1999, that argument is interpreted as the time for
the other files instead of as a file name. Although this obsolete behavior can be controlled
with the _POSIX2_VERSION environment variable (see Section 2.13 [Standards conformance],
page 11), portable scripts should avoid commands whose behavior depends on this variable.
For example, use ‘touch ./12312359 main.c’ or ‘touch -t 12312359 main.c’ rather than
the ambiguous ‘touch 12312359 main.c’.

An exit status of zero indicates success, and a nonzero value indicates failure.

140

14 Disk usage

No disk can hold an infinite amount of data. These commands report how much disk storage
is in use or available, report other file and file status information, and write buffers to disk.

14.1 df: Report file system disk space usage

df reports the amount of disk space used and available on file systems. Synopsis:

df [option]... [file]...

With no arguments, df reports the space used and available on all currently mounted file
systems (of all types). Otherwise, df reports on the file system containing each argument
file.

Normally the disk space is printed in units of 1024 bytes, but this can be overridden (see
Section 2.3 [Block size], page 3). Non-integer quantities are rounded up to the next higher
unit.

For bind mounts and without arguments, df only outputs the statistics for that device
with the shortest mount point name in the list of file systems (mtab), i.e., it hides duplicate
entries, unless the -a option is specified.

With the same logic, df elides a mount entry of a dummy pseudo device if there is another
mount entry of a real block device for that mount point with the same device number, e.g.
the early-boot pseudo file system ‘rootfs’ is not shown per default when already the real
root device has been mounted.

If an argument file resolves to a special file containing a mounted file system, df shows the
space available on that file system rather than on the file system containing the device node.
GNU df does not attempt to determine the disk usage on unmounted file systems, because
on most kinds of systems doing so requires extremely nonportable intimate knowledge of
file system structures.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-a’
‘--all’ Include in the listing dummy, duplicate, or inaccessible file systems, which are

omitted by default. Dummy file systems are typically special purpose pseudo file
systems such as ‘/proc’, with no associated storage. Duplicate file systems are
local or remote file systems that are mounted at separate locations in the local
file hierarchy, or bind mounted locations. Inaccessible file systems are those
which are mounted but subsequently over-mounted by another file system at
that point, or otherwise inaccessible due to permissions of the mount point etc.

‘-B size’
‘--block-size=size’

Scale sizes by size before printing them (see Section 2.3 [Block size], page 3).
For example, -BG prints sizes in units of 1,073,741,824 bytes.

‘-h’
‘--human-readable’

Append a size letter to each size, such as ‘M’ for mebibytes. Powers of 1024
are used, not 1000; ‘M’ stands for 1,048,576 bytes. This option is equivalent to

Chapter 14: Disk usage 141

--block-size=human-readable. Use the --si option if you prefer powers of
1000.

‘-H’ Equivalent to --si.

‘-i’
‘--inodes’

List inode usage information instead of block usage. An inode (short for index
node) contains information about a file such as its owner, permissions, time-
stamps, and location on the disk.

‘-k’ Print sizes in 1024-byte blocks, overriding the default block size (see Section 2.3
[Block size], page 3). This option is equivalent to --block-size=1K.

‘-l’
‘--local’ Limit the listing to local file systems. By default, remote file systems are also

listed.

‘--no-sync’
Do not invoke the sync system call before getting any usage data. This may
make df run significantly faster on systems with many disks, but on some
systems (notably SunOS) the results may be slightly out of date. This is the
default.

‘--output’
‘--output[=field_list]’

Use the output format defined by field list, or print all fields if field list is
omitted. In the latter case, the order of the columns conforms to the order of
the field descriptions below.

The use of the --output together with each of the options -i, -P, and -T is
mutually exclusive.

FIELD LIST is a comma-separated list of columns to be included in df’s output
and therefore effectively controls the order of output columns. Each field can
thus be used at the place of choice, but yet must only be used once.

Valid field names in the field list are:

‘source’ The source of the mount point, usually a device.

‘fstype’ File system type.

‘itotal’ Total number of inodes.

‘iused’ Number of used inodes.

‘iavail’ Number of available inodes.

‘ipcent’ Percentage of iused divided by itotal.

‘size’ Total number of blocks.

‘used’ Number of used blocks.

‘avail’ Number of available blocks.

‘pcent’ Percentage of used divided by size.

Chapter 14: Disk usage 142

‘file’ The file name if specified on the command line.

‘target’ The mount point.

The fields for block and inodes statistics are affected by the scaling options like
-h as usual.

The definition of the field list can even be split among several --output uses.

#!/bin/sh

Print the TARGET (i.e., the mount point) along with their percentage

statistic regarding the blocks and the inodes.

df --out=target --output=pcent,ipcent

Print all available fields.

df --o

‘-P’
‘--portability’

Use the POSIX output format. This is like the default format except for the
following:

1. The information about each file system is always printed on exactly one
line; a mount device is never put on a line by itself. This means that if the
mount device name is more than 20 characters long (e.g., for some network
mounts), the columns are misaligned.

2. The labels in the header output line are changed to conform to POSIX.

3. The default block size and output format are unaffected by the
DF_BLOCK_SIZE, BLOCK_SIZE and BLOCKSIZE environment variables.
However, the default block size is still affected by POSIXLY_CORRECT: it
is 512 if POSIXLY_CORRECT is set, 1024 otherwise. See Section 2.3 [Block
size], page 3.

‘--si’ Append an SI-style abbreviation to each size, such as ‘M’ for megabytes. Pow-
ers of 1000 are used, not 1024; ‘M’ stands for 1,000,000 bytes. This option is
equivalent to --block-size=si. Use the -h or --human-readable option if
you prefer powers of 1024.

‘--sync’ Invoke the sync system call before getting any usage data. On some systems
(notably SunOS), doing this yields more up to date results, but in general this
option makes df much slower, especially when there are many or very busy file
systems.

‘--total’ Print a grand total of all arguments after all arguments have been processed.
This can be used to find out the total disk size, usage and available space
of all listed devices. If no arguments are specified df will try harder to elide
file systems insignificant to the total available space, by suppressing duplicate
remote file systems.

For the grand total line, df prints ‘"total"’ into the source column, and ‘"-"’
into the target column. If there is no source column (see --output), then df

prints ‘"total"’ into the target column, if present.

Chapter 14: Disk usage 143

‘-t fstype’
‘--type=fstype’

Limit the listing to file systems of type fstype. Multiple file system types can
be specified by giving multiple -t options. By default, nothing is omitted.

‘-T’
‘--print-type’

Print each file system’s type. The types printed here are the same ones you can
include or exclude with -t and -x. The particular types printed are whatever
is supported by the system. Here are some of the common names (this list is
certainly not exhaustive):

‘nfs’ An NFS file system, i.e., one mounted over a network from an-
other machine. This is the one type name which seems to be used
uniformly by all systems.

‘ext2, ext3, ext4, xfs, btrfs...’
A file system on a locally-mounted hard disk. (The system might
even support more than one type here; Linux does.)

‘iso9660, cdfs’
A file system on a CD or DVD drive. HP-UX uses ‘cdfs’, most
other systems use ‘iso9660’.

‘ntfs,fat’ File systems used by MS-Windows / MS-DOS.

‘-x fstype’
‘--exclude-type=fstype’

Limit the listing to file systems not of type fstype. Multiple file system types
can be eliminated by giving multiple -x options. By default, no file system
types are omitted.

‘-v’ Ignored; for compatibility with System V versions of df.

df is installed only on systems that have usable mount tables, so portable scripts should
not rely on its existence.

An exit status of zero indicates success, and a nonzero value indicates failure.Failure
includes the case where no output is generated, so you can inspect the exit status of a
command like ‘df -t ext3 -t reiserfs dir’ to test whether dir is on a file system of type
‘ext3’ or ‘reiserfs’.

Since the list of file systems (mtab) is needed to determine the file system type, failure
includes the cases when that list cannot be read and one or more of the options -a, -l, -t
or -x is used together with a file name argument.

14.2 du: Estimate file space usage

du reports the amount of disk space used by the set of specified files and for each subdirectory
(of directory arguments). Synopsis:

du [option]... [file]...

With no arguments, du reports the disk space for the current directory. Normally the
disk space is printed in units of 1024 bytes, but this can be overridden (see Section 2.3
[Block size], page 3). Non-integer quantities are rounded up to the next higher unit.

Chapter 14: Disk usage 144

If two or more hard links point to the same file, only one of the hard links is counted.
The file argument order affects which links are counted, and changing the argument order
may change the numbers and entries that du outputs.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-0’
‘--null’ Output a zero byte (ASCII NUL) at the end of each line, rather than a newline.

This option enables other programs to parse the output even when that output
would contain data with embedded newlines.

‘-a’
‘--all’ Show counts for all files, not just directories.

‘--apparent-size’
Print apparent sizes, rather than disk usage. The apparent size of a file is
the number of bytes reported by wc -c on regular files, or more generally, ls
-l --block-size=1 or stat --format=%s. For example, a file containing the
word ‘zoo’ with no newline would, of course, have an apparent size of 3. Such
a small file may require anywhere from 0 to 16 KiB or more of disk space,
depending on the type and configuration of the file system on which the file
resides. However, a sparse file created with this command:

dd bs=1 seek=2GiB if=/dev/null of=big

has an apparent size of 2 GiB, yet on most modern systems, it actually uses
almost no disk space.

‘-B size’
‘--block-size=size’

Scale sizes by size before printing them (see Section 2.3 [Block size], page 3).
For example, -BG prints sizes in units of 1,073,741,824 bytes.

‘-b’
‘--bytes’ Equivalent to --apparent-size --block-size=1.

‘-c’
‘--total’ Print a grand total of all arguments after all arguments have been processed.

This can be used to find out the total disk usage of a given set of files or
directories.

‘-D’
‘--dereference-args’

Dereference symbolic links that are command line arguments. Does not affect
other symbolic links. This is helpful for finding out the disk usage of directories,
such as /usr/tmp, which are often symbolic links.

‘-d depth’
‘--max-depth=depth’

Show the total for each directory (and file if –all) that is at most MAX DEPTH
levels down from the root of the hierarchy. The root is at level 0, so du

--max-depth=0 is equivalent to du -s.

Chapter 14: Disk usage 145

‘--files0-from=file’
Disallow processing files named on the command line, and instead process those
named in file file; each name being terminated by a zero byte (ASCII NUL). This
is useful when the list of file names is so long that it may exceed a command line
length limitation. In such cases, running du via xargs is undesirable because it
splits the list into pieces and makes du print with the --total (-c) option for
each sublist rather than for the entire list. One way to produce a list of ASCII
NUL terminated file names is with GNU find, using its -print0 predicate. If
file is ‘-’ then the ASCII NUL terminated file names are read from standard
input.

‘-H’ Equivalent to --dereference-args (-D).

‘-h’
‘--human-readable’

Append a size letter to each size, such as ‘M’ for mebibytes. Powers of 1024
are used, not 1000; ‘M’ stands for 1,048,576 bytes. This option is equivalent to
--block-size=human-readable. Use the --si option if you prefer powers of
1000.

‘--inodes’
List inode usage information instead of block usage. This option is useful for
finding directories which contain many files, and therefore eat up most of the
inodes space of a file system (see df, option --inodes). It can well be combined
with the options -a, -c, -h, -l, -s, -S, -t and -x; however, passing other
options regarding the block size, for example -b, -m and --apparent-size, is
ignored.

‘-k’ Print sizes in 1024-byte blocks, overriding the default block size (see Section 2.3
[Block size], page 3). This option is equivalent to --block-size=1K.

‘-L’
‘--dereference’

Dereference symbolic links (show the disk space used by the file or directory
that the link points to instead of the space used by the link).

‘-l’
‘--count-links’

Count the size of all files, even if they have appeared already (as a hard link).

‘-m’ Print sizes in 1,048,576-byte blocks, overriding the default block size (see
Section 2.3 [Block size], page 3). This option is equivalent to --block-size=1M.

‘-P’
‘--no-dereference’

For each symbolic links encountered by du, consider the disk space used by the
symbolic link.

‘-S’
‘--separate-dirs’

Normally, in the output of du (when not using --summarize), the size listed
next to a directory name, d, represents the sum of sizes of all entries beneath

Chapter 14: Disk usage 146

d as well as the size of d itself. With --separate-dirs, the size reported for a
directory name, d, will exclude the size of any subdirectories.

‘--si’ Append an SI-style abbreviation to each size, such as ‘M’ for megabytes. Pow-
ers of 1000 are used, not 1024; ‘M’ stands for 1,000,000 bytes. This option is
equivalent to --block-size=si. Use the -h or --human-readable option if
you prefer powers of 1024.

‘-s’
‘--summarize’

Display only a total for each argument.

‘-t size’
‘--threshold=size’

Exclude entries based on a given size. The size refers to used blocks in normal
mode (see Section 2.3 [Block size], page 3), or inodes count in conjunction with
the --inodes option.

If size is positive, then du will only print entries with a size greater than or
equal to that.

If size is negative, then du will only print entries with a size smaller than or
equal to that.

Although GNU find can be used to find files of a certain size, du’s --threshold
option can be used to also filter directories based on a given size.

Please note that the --threshold option can be combined with the
--apparent-size option, and in this case would elide entries based on its
apparent size.

Please note that the --threshold option can be combined with the --inodes

option, and in this case would elide entries based on its inodes count.

Here’s how you would use --threshold to find directories with a size greater
than or equal to 200 megabytes:

du --threshold=200MB

Here’s how you would use --threshold to find directories and files - note the
-a - with an apparent size smaller than or equal to 500 bytes:

du -a -t -500 --apparent-size

Here’s how you would use --threshold to find directories on the root file system
with more than 20000 inodes used in the directory tree below:

du --inodes -x --threshold=20000 /

‘--time’ Show the most recent modification timestamp (mtime) of any file in the direc-
tory, or any of its subdirectories. See Chapter 28 [File timestamps], page 235.

‘--time=ctime’
‘--time=status’
‘--time=use’

Show the most recent status change timestamp (ctime) of any file in the direc-
tory, or any of its subdirectories. See Chapter 28 [File timestamps], page 235.

Chapter 14: Disk usage 147

‘--time=atime’
‘--time=access’

Show the most recent access timestamp (atime) of any file in the directory, or
any of its subdirectories. See Chapter 28 [File timestamps], page 235.

‘--time-style=style’
List timestamps in style style. This option has an effect only if the --time

option is also specified. The style should be one of the following:

‘+format’ List timestamps using format, where format is interpreted like
the format argument of date (see Section 21.1 [date invocation],
page 187). For example, --time-style="+%Y-%m-%d %H:%M:%S"

causes du to list timestamps like ‘2002-03-30 23:45:56’. As with
date, format’s interpretation is affected by the LC_TIME locale cat-
egory.

‘full-iso’
List timestamps in full using ISO 8601-like date, time, and time
zone components with nanosecond precision, e.g., ‘2002-03-30
23:45:56.477817180 -0700’. This style is equivalent to
‘+%Y-%m-%d %H:%M:%S.%N %z’.

‘long-iso’
List ISO 8601 date and time components with minute precision,
e.g., ‘2002-03-30 23:45’. These timestamps are shorter than
‘full-iso’ timestamps, and are usually good enough for everyday
work. This style is equivalent to ‘+%Y-%m-%d %H:%M’.

‘iso’ List ISO 8601 dates for timestamps, e.g., ‘2002-03-30’. This style
is equivalent to ‘+%Y-%m-%d’.

You can specify the default value of the --time-style option with the en-
vironment variable TIME_STYLE; if TIME_STYLE is not set the default style is
‘long-iso’. For compatibility with ls, if TIME_STYLE begins with ‘+’ and con-
tains a newline, the newline and any later characters are ignored; if TIME_STYLE
begins with ‘posix-’ the ‘posix-’ is ignored; and if TIME_STYLE is ‘locale’ it
is ignored.

‘-X file’
‘--exclude-from=file’

Like --exclude, except take the patterns to exclude from file, one per line. If
file is ‘-’, take the patterns from standard input.

‘--exclude=pattern’
When recursing, skip subdirectories or files matching pattern. For example, du
--exclude=’*.o’ excludes files whose names end in ‘.o’.

‘-x’
‘--one-file-system’

Skip directories that are on different file systems from the one that the argument
being processed is on.

Chapter 14: Disk usage 148

On BSD systems, du reports sizes that are half the correct values for files that are NFS-
mounted from HP-UX systems. On HP-UX systems, it reports sizes that are twice the
correct values for files that are NFS-mounted from BSD systems. This is due to a flaw in
HP-UX; it also affects the HP-UX du program.

An exit status of zero indicates success, and a nonzero value indicates failure.

14.3 stat: Report file or file system status

stat displays information about the specified file(s). Synopsis:

stat [option]... [file]...

With no option, stat reports all information about the given files. But it also can be
used to report the information of the file systems the given files are located on. If the files
are links, stat can also give information about the files the links point to.

Due to shell aliases and built-in stat functions, using an unadorned stat interactively
or in a script may get you different functionality than that described here. Invoke it via
env (i.e., env stat ...) to avoid interference from the shell.

‘-L’
‘--dereference’

Change how stat treats symbolic links. With this option, stat acts on the
file referenced by each symbolic link argument. Without it, stat acts on any
symbolic link argument directly.

‘-f’
‘--file-system’

Report information about the file systems where the given files are located
instead of information about the files themselves. This option implies the -L

option.

‘--cached=mode’
Control how attributes are read from the file system; if supported by the system.
This allows one to control the trade-off between freshness and efficiency of
attribute access, especially useful with remote file systems. mode can be:

‘always’ Always read the already cached attributes if available.

‘never’ Always sychronize with the latest file system attributes.

‘default’ Leave the caching behavior to the underlying file system.

‘-c’
‘--format=format’

Use format rather than the default format. format is automatically newline-
terminated, so running a command like the following with two or more file
operands produces a line of output for each operand:

$ stat --format=%d:%i / /usr

2050:2

2057:2

Chapter 14: Disk usage 149

‘--printf=format’
Use format rather than the default format. Like --format, but interpret back-
slash escapes, and do not output a mandatory trailing newline. If you want
a newline, include ‘\n’ in the format. Here’s how you would use --printf to
print the device and inode numbers of / and /usr:

$ stat --printf=’%d:%i\n’ / /usr

2050:2

2057:2

‘-t’
‘--terse’ Print the information in terse form, suitable for parsing by other programs.

The output of the following commands are identical and the --format also
identifies the items printed (in fuller form) in the default format. Note the
format string would include another ‘%C’ at the end with an active SELinux
security context.

$ stat --format="%n %s %b %f %u %g %D %i %h %t %T %X %Y %Z %W %o" ...

$ stat --terse ...

The same illustrating terse output in --file-system mode:

$ stat -f --format="%n %i %l %t %s %S %b %f %a %c %d" ...

$ stat -f --terse ...

The valid format directives for files with --format and --printf are:

• %a - Permission bits in octal (note ‘#’ and ‘0’ printf flags)

• %A - Permission bits in symbolic form (similar to ls -ld)

• %b - Number of blocks allocated (see ‘%B’)

• %B - The size in bytes of each block reported by ‘%b’

• %C - The SELinux security context of a file, if available

• %d - Device number in decimal

• %D - Device number in hex

• %f - Raw mode in hex

• %F - File type

• %g - Group ID of owner

• %G - Group name of owner

• %h - Number of hard links

• %i - Inode number

• %m - Mount point (See note below)

• %n - File name

• %N - Quoted file name with dereference if symbolic link (see below)

• %o - Optimal I/O transfer size hint

• %s - Total size, in bytes

• %t - Major device type in hex (see below)

• %T - Minor device type in hex (see below)

Chapter 14: Disk usage 150

• %u - User ID of owner

• %U - User name of owner

• %w - Time of file birth, or ‘-’ if unknown

• %W - Time of file birth as seconds since Epoch, or ‘0’

• %x - Time of last access

• %X - Time of last access as seconds since Epoch

• %y - Time of last data modification

• %Y - Time of last data modification as seconds since Epoch

• %z - Time of last status change

• %Z - Time of last status change as seconds since Epoch

The ‘%a’ format prints the octal mode, and so it is useful to control the zero padding
of the output with the ‘#’ and ‘0’ printf flags. For example to pad to at least 3 wide while
making larger numbers unambiguously octal, you can use ‘%#03a’.

The ‘%N’ format can be set with the environment variable QUOTING_STYLE. If that en-
vironment variable is not set, the default value is ‘shell-escape-always’. Valid quoting
styles are:

‘literal’ Output strings as-is; this is the same as the -N or --literal option.

‘shell’ Quote strings for the shell if they contain shell metacharacters or would cause
ambiguous output. The quoting is suitable for POSIX-compatible shells like
bash, but it does not always work for incompatible shells like csh.

‘shell-always’
Quote strings for the shell, even if they would normally not require quoting.

‘shell-escape’
Like ‘shell’, but also quoting non-printable characters using the POSIX pro-
posed ‘$’’’ syntax suitable for most shells.

‘shell-escape-always’
Like ‘shell-escape’, but quote strings even if they would normally not require
quoting.

‘c’ Quote strings as for C character string literals, including the surrounding
double-quote characters; this is the same as the -Q or --quote-name option.

‘escape’ Quote strings as for C character string literals, except omit the surrounding
double-quote characters; this is the same as the -b or --escape option.

‘clocale’ Quote strings as for C character string literals, except use surrounding quotation
marks appropriate for the locale.

‘locale’ Quote strings as for C character string literals, except use surrounding quotation
marks appropriate for the locale, and quote ’like this’ instead of "like

this" in the default C locale. This looks nicer on many displays.

The ‘%t’ and ‘%T’ formats operate on the st rdev member of the stat(2) structure, and
are only defined for character and block special files. On some systems or file types, st rdev
may be used to represent other quantities.

Chapter 14: Disk usage 151

The ‘%W’, ‘%X’, ‘%Y’, and ‘%Z’ formats accept a precision preceded by a period to specify
the number of digits to print after the decimal point. For example, ‘%.3X’ outputs the
access timestamp to millisecond precision. If a period is given but no precision, stat uses
9 digits, so ‘%.X’ is equivalent to ‘%.9X’. When discarding excess precision, timestamps are
truncated toward minus infinity.

zero pad:

$ stat -c ’[%015Y]’ /usr

[000001288929712]

space align:

$ stat -c ’[%15Y]’ /usr

[1288929712]

$ stat -c ’[%-15Y]’ /usr

[1288929712]

precision:

$ stat -c ’[%.3Y]’ /usr

[1288929712.114]

$ stat -c ’[%.Y]’ /usr

[1288929712.114951834]

The mount point printed by ‘%m’ is similar to that output by df, except that:

• stat does not dereference symlinks by default (unless -L is specified)

• stat does not search for specified device nodes in the file system list, instead operating
on them directly

• stat outputs the alias for a bind mounted file, rather than the initial mount point of
its backing device. One can recursively call stat until there is no change in output, to
get the current base mount point

When listing file system information (--file-system (-f)), you must use a different set
of format directives:

• %a - Free blocks available to non-super-user

• %b - Total data blocks in file system

• %c - Total file nodes in file system

• %d - Free file nodes in file system

• %f - Free blocks in file system

• %i - File System ID in hex

• %l - Maximum length of file names

• %n - File name

• %s - Block size (for faster transfers)

• %S - Fundamental block size (for block counts)

• %t - Type in hex

• %T - Type in human readable form

Timestamps are listed according to the time zone rules specified by the TZ environment
variable, or by the system default rules if TZ is not set. See Section “Specifying the Time
Zone with TZ” in The GNU C Library Reference Manual.

An exit status of zero indicates success, and a nonzero value indicates failure.

Chapter 14: Disk usage 152

14.4 sync: Synchronize cached writes to persistent storage

sync synchronizes in memory files or file systems to persistent storage. Synopsis:

sync [option] [file]...

sync writes any data buffered in memory out to disk. This can include (but is not
limited to) modified superblocks, modified inodes, and delayed reads and writes. This must
be implemented by the kernel; The sync program does nothing but exercise the sync,
syncfs, fsync, and fdatasync system calls.

The kernel keeps data in memory to avoid doing (relatively slow) disk reads and writes.
This improves performance, but if the computer crashes, data may be lost or the file system
corrupted as a result. The sync command instructs the kernel to write data in memory to
persistent storage.

If any argument is specified then only those files will be synchronized using the fsync(2)
syscall by default.

If at least one file is specified, it is possible to change the synchronization method with
the following options. Also see Chapter 2 [Common options], page 2.

‘-d’
‘--data’ Use fdatasync(2) to sync only the data for the file, and any metadata required

to maintain file system consistency.

‘-f’
‘--file-system’

Synchronize all the I/O waiting for the file systems that contain the file, using
the syscall syncfs(2). Note you would usually not specify this option if passing
a device node like ‘/dev/sda’ for example, as that would sync the containing
file system rather than the referenced one. Note also that depending on the
system, passing individual device nodes or files may have different sync char-
acteristics than using no arguments. I.e., arguments passed to fsync(2) may
provide greater guarantees through write barriers, than a global sync(2) used
when no arguments are provided.

An exit status of zero indicates success, and a nonzero value indicates failure.

14.5 truncate: Shrink or extend the size of a file

truncate shrinks or extends the size of each file to the specified size. Synopsis:

truncate option... file...

Any file that does not exist is created.

If a file is larger than the specified size, the extra data is lost. If a file is shorter, it is
extended and the sparse extended part (or hole) reads as zero bytes.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-c’
‘--no-create’

Do not create files that do not exist.

153

‘-o’
‘--io-blocks’

Treat size as number of I/O blocks of the file rather than bytes.

‘-r rfile’
‘--reference=rfile’

Base the size of each file on the size of rfile.

‘-s size’
‘--size=size’

Set or adjust the size of each file according to size. size is in bytes unless
--io-blocks is specified. size may be, or may be an integer optionally followed
by, one of the following multiplicative suffixes:

‘KB’ => 1000 (KiloBytes)

‘K’ => 1024 (KibiBytes)

‘MB’ => 1000*1000 (MegaBytes)

‘M’ => 1024*1024 (MebiBytes)

‘GB’ => 1000*1000*1000 (GigaBytes)

‘G’ => 1024*1024*1024 (GibiBytes)

and so on for ‘T’, ‘P’, ‘E’, ‘Z’, and ‘Y’. Binary prefixes can be used, too: ‘KiB’=‘K’,
‘MiB’=‘M’, and so on.

size may also be prefixed by one of the following to adjust the size of each file
based on its current size:

‘+’ => extend by

‘-’ => reduce by

‘<’ => at most

‘>’ => at least

‘/’ => round down to multiple of

‘%’ => round up to multiple of

An exit status of zero indicates success, and a nonzero value indicates failure.

154

15 Printing text

This section describes commands that display text strings.

15.1 echo: Print a line of text

echo writes each given string to standard output, with a space between each and a newline
after the last one. Synopsis:

echo [option]... [string]...

Due to shell aliases and built-in echo functions, using an unadorned echo interactively
or in a script may get you different functionality than that described here. Invoke it via
env (i.e., env echo ...) to avoid interference from the shell.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2. Options must precede operands, and the normally-special argument ‘--’ has no
special meaning and is treated like any other string.

‘-n’ Do not output the trailing newline.

‘-e’ Enable interpretation of the following backslash-escaped characters in each
string :

‘\a’ alert (bell)

‘\b’ backspace

‘\c’ produce no further output

‘\e’ escape

‘\f’ form feed

‘\n’ newline

‘\r’ carriage return

‘\t’ horizontal tab

‘\v’ vertical tab

‘\\’ backslash

‘\0nnn’ the eight-bit value that is the octal number nnn (zero to three octal
digits), if nnn is a nine-bit value, the ninth bit is ignored

‘\nnn’ the eight-bit value that is the octal number nnn (one to three octal
digits), if nnn is a nine-bit value, the ninth bit is ignored

‘\xhh’ the eight-bit value that is the hexadecimal number hh (one or two
hexadecimal digits)

‘-E’ Disable interpretation of backslash escapes in each string. This is the default.
If -e and -E are both specified, the last one given takes effect.

If the POSIXLY_CORRECT environment variable is set, then when echo’s first argument is
not -n it outputs option-like arguments instead of treating them as options. For example,

Chapter 15: Printing text 155

echo -ne hello outputs ‘-ne hello’ instead of plain ‘hello’. Also backslash escapes are
always enabled.

POSIX does not require support for any options, and says that the behavior of echo
is implementation-defined if any string contains a backslash or if the first argument is -n.
Portable programs can use the printf command if they need to omit trailing newlines or
output control characters or backslashes. See Section 15.2 [printf invocation], page 155.

An exit status of zero indicates success, and a nonzero value indicates failure.

15.2 printf: Format and print data

printf does formatted printing of text. Synopsis:

printf format [argument]...

printf prints the format string, interpreting ‘%’ directives and ‘\’ escapes to format
numeric and string arguments in a way that is mostly similar to the C ‘printf’ function.
See Section “printf format directives” in The GNU C Library Reference Manual, for
details. The differences are listed below.

Due to shell aliases and built-in printf functions, using an unadorned printf interac-
tively or in a script may get you different functionality than that described here. Invoke it
via env (i.e., env printf ...) to avoid interference from the shell.

• The format argument is reused as necessary to convert all the given arguments. For
example, the command ‘printf %s a b’ outputs ‘ab’.

• Missing arguments are treated as null strings or as zeros, depending on whether the
context expects a string or a number. For example, the command ‘printf %sx%d’
prints ‘x0’.

• An additional escape, ‘\c’, causes printf to produce no further output. For example,
the command ‘printf ’A%sC\cD%sF’ B E’ prints ‘ABC’.

• The hexadecimal escape sequence ‘\xhh’ has at most two digits, as opposed to C
where it can have an unlimited number of digits. For example, the command ‘printf
’\x07e’’ prints two bytes, whereas the C statement ‘printf ("\x07e")’ prints just
one.

• An additional directive ‘%b’, prints its argument string with ‘\’ escapes interpreted in
the same way as in the format string, except that octal escapes are of the form ‘\0ooo’
where ooo is 0 to 3 octal digits. If ‘\ooo’ is nine-bit value, ignore the ninth bit. If a
precision is also given, it limits the number of bytes printed from the converted string.

• An additional directive ‘%q’, prints its argument string in a format that can be reused as
input by most shells. Non-printable characters are escaped with the POSIX proposed
‘$’’’ syntax, and shell metacharacters are quoted appropriately. This is an equivalent
format to ls --quoting=shell-escape output.

• Numeric arguments must be single C constants, possibly with leading ‘+’ or ‘-’. For
example, ‘printf %.4d -3’ outputs ‘-0003’.

• If the leading character of a numeric argument is ‘"’ or ‘’’ then its value is the numeric
value of the immediately following character. Any remaining characters are silently
ignored if the POSIXLY_CORRECT environment variable is set; otherwise, a warning is
printed. For example, ‘printf "%d" "’a"’ outputs ‘97’ on hosts that use the ASCII
character set, since ‘a’ has the numeric value 97 in ASCII.

Chapter 15: Printing text 156

A floating point argument is interpreted according to the LC_NUMERIC category of either
the current or the C locale, and is printed according to the current locale. For example,
in a locale whose decimal point character is a comma, the command ‘printf ’%g %g’ 2,5

2.5’ outputs ‘2,5 2,5’. See Section 2.4 [Floating point], page 5.

printf interprets ‘\ooo’ in format as an octal number (if ooo is 1 to 3 octal digits)
specifying a byte to print, and ‘\xhh’ as a hexadecimal number (if hh is 1 to 2 hex digits)
specifying a character to print. Note however that when ‘\ooo’ specifies a number larger
than 255, printf ignores the ninth bit. For example, ‘printf ’\400’’ is equivalent to
‘printf ’\0’’.

printf interprets two character syntaxes introduced in ISO C 99: ‘\u’ for 16-bit Uni-
code (ISO/IEC 10646) characters, specified as four hexadecimal digits hhhh, and ‘\U’ for
32-bit Unicode characters, specified as eight hexadecimal digits hhhhhhhh. printf out-
puts the Unicode characters according to the LC_CTYPE locale. Unicode characters in the
ranges U+0000. . .U+009F, U+D800. . .U+DFFF cannot be specified by this syntax, except

for U+0024 ($), U+0040 (@), and U+0060 ()̀.

The processing of ‘\u’ and ‘\U’ requires a full-featured iconv facility. It is activated
on systems with glibc 2.2 (or newer), or when libiconv is installed prior to this package.
Otherwise ‘\u’ and ‘\U’ will print as-is.

The only options are a lone --help or --version. See Chapter 2 [Common options],
page 2. Options must precede operands.

The Unicode character syntaxes are useful for writing strings in a locale independent
way. For example, a string containing the Euro currency symbol

$ env printf ’\u20AC 14.95’

will be output correctly in all locales supporting the Euro symbol (ISO-8859-15, UTF-8,
and others). Similarly, a Chinese string

$ env printf ’\u4e2d\u6587’

will be output correctly in all Chinese locales (GB2312, BIG5, UTF-8, etc).

Note that in these examples, the printf command has been invoked via env to ensure
that we run the program found via your shell’s search path, and not a shell alias or a built-in
function.

For larger strings, you don’t need to look up the hexadecimal code values of each char-
acter one by one. ASCII characters mixed with \u escape sequences is also known as the
JAVA source file encoding. You can use GNU recode 3.5c (or newer) to convert strings to
this encoding. Here is how to convert a piece of text into a shell script which will output
this text in a locale-independent way:

$ LC_CTYPE=zh_CN.big5 /usr/local/bin/printf \

’\u4e2d\u6587\n’ > sample.txt

$ recode BIG5..JAVA < sample.txt \

| sed -e "s|^|/usr/local/bin/printf ’|" -e "s|$|\\\\n’|" \

> sample.sh

An exit status of zero indicates success, and a nonzero value indicates failure.

Chapter 15: Printing text 157

15.3 yes: Print a string until interrupted

yes prints the command line arguments, separated by spaces and followed by a newline,
forever until it is killed. If no arguments are given, it prints ‘y’ followed by a newline forever
until killed.

Upon a write error, yes exits with status ‘1’.

The only options are a lone --help or --version. To output an argument that begins
with ‘-’, precede it with --, e.g., ‘yes -- --help’. See Chapter 2 [Common options], page 2.

158

16 Conditions

This section describes commands that are primarily useful for their exit status, rather than
their output. Thus, they are often used as the condition of shell if statements, or as the
last command in a pipeline.

16.1 false: Do nothing, unsuccessfully

false does nothing except return an exit status of 1, meaning failure. It can be used as
a place holder in shell scripts where an unsuccessful command is needed. In most modern
shells, false is a built-in command, so when you use ‘false’ in a script, you’re probably
using the built-in command, not the one documented here.

false honors the --help and --version options.

This version of false is implemented as a C program, and is thus more secure and faster
than a shell script implementation, and may safely be used as a dummy shell for the purpose
of disabling accounts.

Note that false (unlike all other programs documented herein) exits unsuccessfully,
even when invoked with --help or --version.

Portable programs should not assume that the exit status of false is 1, as it is greater
than 1 on some non-GNU hosts.

16.2 true: Do nothing, successfully

true does nothing except return an exit status of 0, meaning success. It can be used as
a place holder in shell scripts where a successful command is needed, although the shell
built-in command : (colon) may do the same thing faster. In most modern shells, true is
a built-in command, so when you use ‘true’ in a script, you’re probably using the built-in
command, not the one documented here.

true honors the --help and --version options.

Note, however, that it is possible to cause true to exit with nonzero status: with the
--help or --version option, and with standard output already closed or redirected to a
file that evokes an I/O error. For example, using a Bourne-compatible shell:

$./true --version >&-

./true: write error: Bad file number

$./true --version > /dev/full

./true: write error: No space left on device

This version of true is implemented as a C program, and is thus more secure and faster
than a shell script implementation, and may safely be used as a dummy shell for the purpose
of disabling accounts.

16.3 test: Check file types and compare values

test returns a status of 0 (true) or 1 (false) depending on the evaluation of the conditional
expression expr. Each part of the expression must be a separate argument.

test has file status checks, string operators, and numeric comparison operators.

Chapter 16: Conditions 159

test has an alternate form that uses opening and closing square brackets instead a
leading ‘test’. For example, instead of ‘test -d /’, you can write ‘[-d /]’. The square
brackets must be separate arguments; for example, ‘[-d /]’ does not have the desired effect.
Since ‘test expr’ and ‘[expr]’ have the same meaning, only the former form is discussed
below.

Synopses:

test expression

test

[expression]

[]

[option

Due to shell aliases and built-in test functions, using an unadorned test interactively
or in a script may get you different functionality than that described here. Invoke it via
env (i.e., env test ...) to avoid interference from the shell.

If expression is omitted, test returns false. If expression is a single argument, test
returns false if the argument is null and true otherwise. The argument can be any string,
including strings like ‘-d’, ‘-1’, ‘--’, ‘--help’, and ‘--version’ that most other programs
would treat as options. To get help and version information, invoke the commands ‘[
--help’ and ‘[--version’, without the usual closing brackets. See Chapter 2 [Common
options], page 2.

Exit status:

0 if the expression is true,
1 if the expression is false,
2 if an error occurred.

16.3.1 File type tests

These options test for particular types of files. (Everything’s a file, but not all files are the
same!)

‘-b file’ True if file exists and is a block special device.

‘-c file’ True if file exists and is a character special device.

‘-d file’ True if file exists and is a directory.

‘-f file’ True if file exists and is a regular file.

‘-h file’
‘-L file’ True if file exists and is a symbolic link. Unlike all other file-related tests, this

test does not dereference file if it is a symbolic link.

‘-p file’ True if file exists and is a named pipe.

‘-S file’ True if file exists and is a socket.

‘-t fd’ True if fd is a file descriptor that is associated with a terminal.

Chapter 16: Conditions 160

16.3.2 Access permission tests

These options test for particular access permissions.

‘-g file’ True if file exists and has its set-group-ID bit set.

‘-k file’ True if file exists and has its sticky bit set.

‘-r file’ True if file exists and read permission is granted.

‘-u file’ True if file exists and has its set-user-ID bit set.

‘-w file’ True if file exists and write permission is granted.

‘-x file’ True if file exists and execute permission is granted (or search permission, if it
is a directory).

‘-O file’ True if file exists and is owned by the current effective user ID.

‘-G file’ True if file exists and is owned by the current effective group ID.

16.3.3 File characteristic tests

These options test other file characteristics.

‘-e file’ True if file exists.

‘-s file’ True if file exists and has a size greater than zero.

‘file1 -nt file2’
True if file1 is newer (according to modification date) than file2, or if file1 exists
and file2 does not.

‘file1 -ot file2’
True if file1 is older (according to modification date) than file2, or if file2 exists
and file1 does not.

‘file1 -ef file2’
True if file1 and file2 have the same device and inode numbers, i.e., if they are
hard links to each other.

‘-N file’ True if file exists and has been modified (mtime) since it was last read (atime).

16.3.4 String tests

These options test string characteristics. You may need to quote string arguments for the
shell. For example:

test -n "$V"

The quotes here prevent the wrong arguments from being passed to test if ‘$V’ is empty
or contains special characters.

‘-z string’
True if the length of string is zero.

‘-n string’
‘string’ True if the length of string is nonzero.

‘string1 = string2’
True if the strings are equal.

Chapter 16: Conditions 161

‘string1 == string2’
True if the strings are equal (synonym for =).

‘string1 != string2’
True if the strings are not equal.

16.3.5 Numeric tests

Numeric relational operators. The arguments must be entirely numeric (possibly negative),
or the special expression -l string, which evaluates to the length of string.

‘arg1 -eq arg2’
‘arg1 -ne arg2’
‘arg1 -lt arg2’
‘arg1 -le arg2’
‘arg1 -gt arg2’
‘arg1 -ge arg2’

These arithmetic binary operators return true if arg1 is equal, not-equal, less-
than, less-than-or-equal, greater-than, or greater-than-or-equal than arg2, re-
spectively.

For example:

test -1 -gt -2 && echo yes

⇒ yes

test -l abc -gt 1 && echo yes

⇒ yes

test 0x100 -eq 1

error test: integer expression expected before -eq

16.3.6 Connectives for test

Note it’s preferred to use shell logical primitives rather than these logical connectives internal
to test, because an expression may become ambiguous depending on the expansion of its
parameters.

For example, this becomes ambiguous when ‘$1’ is set to ‘’!’’ and ‘$2’ to the empty
string ‘’’’:

test "$1" -a "$2"

and should be written as:

test "$1" && test "$2"

Note the shell logical primitives also benefit from short circuit operation, which can be
significant for file attribute tests.

‘! expr’ True if expr is false. ‘!’ has lower precedence than all parts of expr. Note ‘!’
needs to be specified to the left of a binary expression, I.e., ‘’!’ 1 -gt 2’ rather
than ‘1 ’!’ -gt 2’. Also ‘!’ is often a shell special character and is best used
quoted.

‘expr1 -a expr2’
True if both expr1 and expr2 are true. ‘-a’ is left associative, and has a higher
precedence than ‘-o’.

Chapter 16: Conditions 162

‘expr1 -o expr2’
True if either expr1 or expr2 is true. ‘-o’ is left associative.

16.4 expr: Evaluate expressions

expr evaluates an expression and writes the result on standard output. Each token of the
expression must be a separate argument.

Operands are either integers or strings. Integers consist of one or more decimal digits,
with an optional leading ‘-’. expr converts anything appearing in an operand position to
an integer or a string depending on the operation being applied to it.

Strings are not quoted for expr itself, though you may need to quote them to protect
characters with special meaning to the shell, e.g., spaces. However, regardless of whether
it is quoted, a string operand should not be a parenthesis or any of expr’s operators like
+, so you cannot safely pass an arbitrary string $str to expr merely by quoting it to the
shell. One way to work around this is to use the GNU extension +, (e.g., + "$str" = foo);
a more portable way is to use " $str" and to adjust the rest of the expression to take the
leading space into account (e.g., " $str" = " foo").

You should not pass a negative integer or a string with leading ‘-’ as expr’s first argu-
ment, as it might be misinterpreted as an option; this can be avoided by parenthesization.
Also, portable scripts should not use a string operand that happens to take the form of an
integer; this can be worked around by inserting leading spaces as mentioned above.

Operators may be given as infix symbols or prefix keywords. Parentheses may be used
for grouping in the usual manner. You must quote parentheses and many operators to avoid
the shell evaluating them, however.

When built with support for the GNU MP library, expr uses arbitrary-precision arith-
metic; otherwise, it uses native arithmetic types and may fail due to arithmetic overflow.

The only options are --help and --version. See Chapter 2 [Common options], page 2.
Options must precede operands.

Exit status:

0 if the expression is neither null nor 0,
1 if the expression is null or 0,
2 if the expression is invalid,
3 if an internal error occurred (e.g., arithmetic overflow).

16.4.1 String expressions

expr supports pattern matching and other string operators. These have higher precedence
than both the numeric and relational operators (in the next sections).

‘string : regex’
Perform pattern matching. The arguments are converted to strings and the
second is considered to be a (basic, a la GNU grep) regular expression, with a
^ implicitly prepended. The first argument is then matched against this regular
expression.

If the match succeeds and regex uses ‘\(’ and ‘\)’, the : expression returns the
part of string that matched the subexpression; otherwise, it returns the number
of characters matched.

Chapter 16: Conditions 163

If the match fails, the : operator returns the null string if ‘\(’ and ‘\)’ are used
in regex, otherwise 0.

Only the first ‘\(... \)’ pair is relevant to the return value; additional pairs
are meaningful only for grouping the regular expression operators.

In the regular expression, \+, \?, and \| are operators which respectively match
one or more, zero or one, or separate alternatives. SunOS and other expr’s
treat these as regular characters. (POSIX allows either behavior.) See Section
“Regular Expression Library” in Regex, for details of regular expression syntax.
Some examples are in Section 16.4.4 [Examples of expr], page 164.

‘match string regex’
An alternative way to do pattern matching. This is the same as
‘string : regex’.

‘substr string position length’
Returns the substring of string beginning at position with length at most length.
If either position or length is negative, zero, or non-numeric, returns the null
string.

‘index string charset’
Returns the first position in string where the first character in charset was
found. If no character in charset is found in string, return 0.

‘length string’
Returns the length of string.

‘+ token’ Interpret token as a string, even if it is a keyword like match or an operator
like /. This makes it possible to test expr length + "$x" or expr + "$x" :

’.*/\(.\)’ and have it do the right thing even if the value of $x happens to
be (for example) / or index. This operator is a GNU extension. Portable shell
scripts should use " $token" : ’ \(.*\)’ instead of + "$token".

To make expr interpret keywords as strings, you must use the quote operator.

16.4.2 Numeric expressions

expr supports the usual numeric operators, in order of increasing precedence. These numeric
operators have lower precedence than the string operators described in the previous section,
and higher precedence than the connectives (next section).

‘+ -’ Addition and subtraction. Both arguments are converted to integers; an error
occurs if this cannot be done.

‘* / %’ Multiplication, division, remainder. Both arguments are converted to integers;
an error occurs if this cannot be done.

16.4.3 Relations for expr

expr supports the usual logical connectives and relations. These have lower precedence than
the string and numeric operators (previous sections). Here is the list, lowest-precedence
operator first.

Chapter 16: Conditions 164

‘|’ Returns its first argument if that is neither null nor zero, otherwise its second
argument if it is neither null nor zero, otherwise 0. It does not evaluate its
second argument if its first argument is neither null nor zero.

‘&’ Return its first argument if neither argument is null or zero, otherwise 0. It
does not evaluate its second argument if its first argument is null or zero.

‘< <= = == != >= >’
Compare the arguments and return 1 if the relation is true, 0 otherwise. ==

is a synonym for =. expr first tries to convert both arguments to integers
and do a numeric comparison; if either conversion fails, it does a lexicographic
comparison using the character collating sequence specified by the LC_COLLATE
locale.

16.4.4 Examples of using expr

Here are a few examples, including quoting for shell metacharacters.

To add 1 to the shell variable foo, in Bourne-compatible shells:

foo=$(expr $foo + 1)

To print the non-directory part of the file name stored in $fname, which need not contain
a /:

expr $fname : ’.*/\(.*\)’ ’|’ $fname

An example showing that \+ is an operator:

expr aaa : ’a\+’

⇒ 3

expr abc : ’a\(.\)c’

⇒ b

expr index abcdef cz

⇒ 3

expr index index a

error expr: syntax error

expr index + index a

⇒ 0

165

17 Redirection

Unix shells commonly provide several forms of redirection—ways to change the input source
or output destination of a command. But one useful redirection is performed by a separate
command, not by the shell; it’s described here.

17.1 tee: Redirect output to multiple files or processes

The tee command copies standard input to standard output and also to any files given as
arguments. This is useful when you want not only to send some data down a pipe, but also
to save a copy. Synopsis:

tee [option]... [file]...

If a file being written to does not already exist, it is created. If a file being written to
already exists, the data it previously contained is overwritten unless the -a option is used.

In previous versions of GNU coreutils (v5.3.0 - v8.23), a file of ‘-’ caused tee to send
another copy of input to standard output. However, as the interleaved output was not very
useful, tee now conforms to POSIX which explicitly mandates it to treat ‘-’ as a file with
such name.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-a’
‘--append’

Append standard input to the given files rather than overwriting them.

‘-i’
‘--ignore-interrupts’

Ignore interrupt signals.

‘-p’
‘--output-error[=mode]’

Adjust the behavior with errors on the outputs, with the long form option
supporting selection between the following modes:

‘warn’ Warn on error opening or writing any output, including pipes.
Writing is continued to still open files/pipes. Exit status indicates
failure if any output has an error.

‘warn-nopipe’
This is the default mode when not specified, or when the short form
-p is used. Warn on error opening or writing any output, except
pipes. Writing is continued to still open files/pipes. Exit status
indicates failure if any non pipe output had an error.

‘exit’ Exit on error opening or writing any output, including pipes.

‘exit-nopipe’
Exit on error opening or writing any output, except pipes.

The tee command is useful when you happen to be transferring a large amount of data
and also want to summarize that data without reading it a second time. For example, when

Chapter 17: Redirection 166

you are downloading a DVD image, you often want to verify its signature or checksum right
away. The inefficient way to do it is simply:

wget https://example.com/some.iso && sha1sum some.iso

One problem with the above is that it makes you wait for the download to complete
before starting the time-consuming SHA1 computation. Perhaps even more importantly,
the above requires reading the DVD image a second time (the first was from the network).

The efficient way to do it is to interleave the download and SHA1 computation. Then,
you’ll get the checksum for free, because the entire process parallelizes so well:

slightly contrived, to demonstrate process substitution

wget -O - https://example.com/dvd.iso \

| tee >(sha1sum > dvd.sha1) > dvd.iso

That makes tee write not just to the expected output file, but also to a pipe running
sha1sum and saving the final checksum in a file named dvd.sha1.

Note, however, that this example relies on a feature of modern shells called process
substitution (the ‘>(command)’ syntax, above; See Section “Process Substitution” in The
Bash Reference Manual.), so it works with zsh, bash, and ksh, but not with /bin/sh. So
if you write code like this in a shell script, be sure to start the script with ‘#!/bin/bash’.

Note also that if any of the process substitutions (or piped stdout) might exit early
without consuming all the data, the -p option is needed to allow tee to continue to process
the input to any remaining outputs.

Since the above example writes to one file and one process, a more conventional and
portable use of tee is even better:

wget -O - https://example.com/dvd.iso \

| tee dvd.iso | sha1sum > dvd.sha1

You can extend this example to make tee write to two processes, computing MD5 and
SHA1 checksums in parallel. In this case, process substitution is required:

wget -O - https://example.com/dvd.iso \

| tee >(sha1sum > dvd.sha1) \

>(md5sum > dvd.md5) \

> dvd.iso

This technique is also useful when you want to make a compressed copy of the contents
of a pipe. Consider a tool to graphically summarize disk usage data from ‘du -ak’. For a
large hierarchy, ‘du -ak’ can run for a long time, and can easily produce terabytes of data,
so you won’t want to rerun the command unnecessarily. Nor will you want to save the
uncompressed output.

Doing it the inefficient way, you can’t even start the GUI until after you’ve compressed
all of the du output:

du -ak | gzip -9 > /tmp/du.gz

gzip -d /tmp/du.gz | xdiskusage -a

With tee and process substitution, you start the GUI right away and eliminate the
decompression completely:

du -ak | tee >(gzip -9 > /tmp/du.gz) | xdiskusage -a

167

Finally, if you regularly create more than one type of compressed tarball at once, for
example when make dist creates both gzip-compressed and bzip2-compressed tarballs,
there may be a better way. Typical automake-generated Makefile rules create the two
compressed tar archives with commands in sequence, like this (slightly simplified):

tardir=your-pkg-M.N

tar chof - "$tardir" | gzip -9 -c > your-pkg-M.N.tar.gz

tar chof - "$tardir" | bzip2 -9 -c > your-pkg-M.N.tar.bz2

However, if the hierarchy you are archiving and compressing is larger than a couple
megabytes, and especially if you are using a multi-processor system with plenty of memory,
then you can do much better by reading the directory contents only once and running the
compression programs in parallel:

tardir=your-pkg-M.N

tar chof - "$tardir" \

| tee >(gzip -9 -c > your-pkg-M.N.tar.gz) \

| bzip2 -9 -c > your-pkg-M.N.tar.bz2

If you want to further process the output from process substitutions, and those processes
write atomically (i.e., write less than the system’s PIPE BUF size at a time), that’s possible
with a construct like:

tardir=your-pkg-M.N

tar chof - "$tardir" \

| tee >(md5sum --tag) > >(sha256sum --tag) \

| sort | gpg --clearsign > your-pkg-M.N.tar.sig

An exit status of zero indicates success, and a nonzero value indicates failure.

168

18 File name manipulation

This section describes commands that manipulate file names.

18.1 basename: Strip directory and suffix from a file name

basename removes any leading directory components from name. Synopsis:

basename name [suffix]

basename option... name...

If suffix is specified and is identical to the end of name, it is removed from name as well.
Note that since trailing slashes are removed prior to suffix matching, suffix will do nothing
if it contains slashes. basename prints the result on standard output.

Together, basename and dirname are designed such that if ‘ls "$name"’ succeeds, then
the command sequence ‘cd "$(dirname "$name")"; ls "$(basename "$name")"’ will, too.
This works for everything except file names containing a trailing newline.POSIX allows the
implementation to define the results if name is empty or ‘//’. In the former case, GNU
basename returns the empty string. In the latter case, the result is ‘//’ on platforms where
// is distinct from /, and ‘/’ on platforms where there is no difference.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2. Options must precede operands.

‘-a’
‘--multiple’

Support more than one argument. Treat every argument as a name. With this,
an optional suffix must be specified using the -s option.

‘-s suffix’
‘--suffix=suffix’

Remove a trailing suffix. This option implies the -a option.

‘-z’
‘--zero’ Output a zero byte (ASCII NUL) at the end of each line, rather than a newline.

This option enables other programs to parse the output even when that output
would contain data with embedded newlines.

An exit status of zero indicates success, and a nonzero value indicates failure.Examples:

Output "sort".

basename /usr/bin/sort

Output "stdio".

basename include/stdio.h .h

Output "stdio".

basename -s .h include/stdio.h

Output "stdio" followed by "stdlib"

basename -a -s .h include/stdio.h include/stdlib.h

Chapter 18: File name manipulation 169

18.2 dirname: Strip last file name component

dirname prints all but the final slash-delimited component of each name. Slashes on either
side of the final component are also removed. If the string contains no slash, dirname prints
‘.’ (meaning the current directory). Synopsis:

dirname [option] name...

name need not be a file name, but if it is, this operation effectively lists the directory
that contains the final component, including the case when the final component is itself a
directory.

Together, basename and dirname are designed such that if ‘ls "$name"’ succeeds, then
the command sequence ‘cd "$(dirname "$name")"; ls "$(basename "$name")"’ will, too.
This works for everything except file names containing a trailing newline.POSIX allows the
implementation to define the results if name is ‘//’. With GNU dirname, the result is ‘//’
on platforms where // is distinct from /, and ‘/’ on platforms where there is no difference.

The program accepts the following option. Also see Chapter 2 [Common options], page 2.

‘-z’
‘--zero’ Output a zero byte (ASCII NUL) at the end of each line, rather than a newline.

This option enables other programs to parse the output even when that output
would contain data with embedded newlines.

An exit status of zero indicates success, and a nonzero value indicates failure.Examples:

Output "/usr/bin".

dirname /usr/bin/sort

dirname /usr/bin//.//

Output "dir1" followed by "dir2"

dirname dir1/str dir2/str

Output ".".

dirname stdio.h

18.3 pathchk: Check file name validity and portability

pathchk checks validity and portability of file names. Synopsis:

pathchk [option]... name...

For each name, pathchk prints an error message if any of these conditions is true:

1. One of the existing directories in name does not have search (execute) permission,

2. The length of name is larger than the maximum supported by the operating system.

3. The length of one component of name is longer than its file system’s maximum.

A nonexistent name is not an error, so long a file with that name could be created under
the above conditions.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2. Options must precede operands.

‘-p’ Instead of performing checks based on the underlying file system, print an error
message if any of these conditions is true:

1. A file name is empty.

Chapter 18: File name manipulation 170

2. A file name contains a character outside the POSIX portable file name
character set, namely, the ASCII letters and digits, ‘.’, ‘_’, ‘-’, and ‘/’.

3. The length of a file name or one of its components exceeds the POSIX
minimum limits for portability.

‘-P’ Print an error message if a file name is empty, or if it contains a component
that begins with ‘-’.

‘--portability’
Print an error message if a file name is not portable to all POSIX hosts. This
option is equivalent to ‘-p -P’.

Exit status:

0 if all specified file names passed all checks,
1 otherwise.

18.4 mktemp: Create temporary file or directory

mktemp manages the creation of temporary files and directories. Synopsis:

mktemp [option]... [template]

Safely create a temporary file or directory based on template, and print its name. If given,
template must include at least three consecutive ‘X’s in the last component. If omitted, the
template ‘tmp.XXXXXXXXXX’ is used, and option --tmpdir is implied. The final run of ‘X’s
in the template will be replaced by alpha-numeric characters; thus, on a case-sensitive file
system, and with a template including a run of n instances of ‘X’, there are ‘62**n’ potential
file names.

Older scripts used to create temporary files by simply joining the name of the program
with the process id (‘$$’) as a suffix. However, that naming scheme is easily predictable,
and suffers from a race condition where the attacker can create an appropriately named
symbolic link, such that when the script then opens a handle to what it thought was an
unused file, it is instead modifying an existing file. Using the same scheme to create a
directory is slightly safer, since the mkdir will fail if the target already exists, but it is still
inferior because it allows for denial of service attacks. Therefore, modern scripts should use
the mktemp command to guarantee that the generated name will be unpredictable, and that
knowledge of the temporary file name implies that the file was created by the current script
and cannot be modified by other users.

When creating a file, the resulting file has read and write permissions for the current
user, but no permissions for the group or others; these permissions are reduced if the current
umask is more restrictive.

Here are some examples (although note that if you repeat them, you will most likely get
different file names):

• Create a temporary file in the current directory.

$ mktemp file.XXXX

file.H47c

• Create a temporary file with a known suffix.

$ mktemp --suffix=.txt file-XXXX

Chapter 18: File name manipulation 171

file-H08W.txt

$ mktemp file-XXXX-XXXX.txt

file-XXXX-eI9L.txt

• Create a secure fifo relative to the user’s choice of TMPDIR, but falling back to the
current directory rather than /tmp. Note that mktemp does not create fifos, but can
create a secure directory in which the fifo can live. Exit the shell if the directory or fifo
could not be created.

$ dir=$(mktemp -p "${TMPDIR:-.}" -d dir-XXXX) || exit 1

$ fifo=$dir/fifo

$ mkfifo "$fifo" || { rmdir "$dir"; exit 1; }

• Create and use a temporary file if possible, but ignore failure. The file will reside in
the directory named by TMPDIR, if specified, or else in /tmp.

$ file=$(mktemp -q) && {

> # Safe to use $file only within this block. Use quotes,

> # since $TMPDIR, and thus $file, may contain whitespace.

> echo ... > "$file"

> rm "$file"

> }

• Act as a semi-random character generator (it is not fully random, since it is impacted by
the contents of the current directory). To avoid security holes, do not use the resulting
names to create a file.

$ mktemp -u XXX

Gb9

$ mktemp -u XXX

nzC

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-d’
‘--directory’

Create a directory rather than a file. The directory will have read, write, and
search permissions for the current user, but no permissions for the group or
others; these permissions are reduced if the current umask is more restrictive.

‘-q’
‘--quiet’ Suppress diagnostics about failure to create a file or directory. The exit status

will still reflect whether a file was created.

‘-u’
‘--dry-run’

Generate a temporary name that does not name an existing file, without chang-
ing the file system contents. Using the output of this command to create a new
file is inherently unsafe, as there is a window of time between generating the
name and using it where another process can create an object by the same
name.

Chapter 18: File name manipulation 172

‘-p dir’
‘--tmpdir[=dir]’

Treat template relative to the directory dir. If dir is not specified (only possible
with the long option --tmpdir) or is the empty string, use the value of TMPDIR
if available, otherwise use ‘/tmp’. If this is specified, template must not be
absolute. However, template can still contain slashes, although intermediate
directories must already exist.

‘--suffix=suffix’
Append suffix to the template. suffix must not contain slash. If --suffix is
specified, template must end in ‘X’; if it is not specified, then an appropriate
--suffix is inferred by finding the last ‘X’ in template. This option exists for
use with the default template and for the creation of a suffix that starts with
‘X’.

‘-t’ Treat template as a single file relative to the value of TMPDIR if available, or to
the directory specified by -p, otherwise to ‘/tmp’. template must not contain
slashes. This option is deprecated; the use of -p without -t offers better defaults
(by favoring the command line over TMPDIR) and more flexibility (by allowing
intermediate directories).

Exit status:

0 if the file was created,
1 otherwise.

18.5 realpath: Print the resolved file name.

realpath expands all symbolic links and resolves references to ‘/./’, ‘/../’ and extra ‘/’
characters. By default, all but the last component of the specified files must exist. Synopsis:

realpath [option]... file...

The file name canonicalization functionality overlaps with that of the readlink com-
mand. This is the preferred command for canonicalization as it’s a more suitable and
standard name. In addition this command supports relative file name processing function-
ality.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-e’
‘--canonicalize-existing’

Ensure that all components of the specified file names exist. If any component is
missing or unavailable, realpath will output a diagnostic unless the -q option
is specified, and exit with a nonzero exit code. A trailing slash requires that
the name resolve to a directory.

‘-m’
‘--canonicalize-missing’

If any component of a specified file name is missing or unavailable, treat it as
a directory.

Chapter 18: File name manipulation 173

‘-L’
‘--logical’

Symbolic links are resolved in the specified file names, but they are resolved
after any subsequent ‘..’ components are processed.

‘-P’
‘--physical’

Symbolic links are resolved in the specified file names, and they are resolved
before any subsequent ‘..’ components are processed. This is the default mode
of operation.

‘-q’
‘--quiet’ Suppress diagnostic messages for specified file names.

‘--relative-to=dir’
Print the resolved file names relative to the specified directory. Note this option
honors the -m and -e options pertaining to file existence.

‘--relative-base=dir’
Print the resolved file names as relative if the files are descendants of dir.
Otherwise, print the resolved file names as absolute. Note this option honors
the -m and -e options pertaining to file existence. For details about combin-
ing --relative-to and --relative-base, see Section 18.5.1 [Realpath usage
examples], page 173.

‘-s’
‘--strip’
‘--no-symlinks’

Do not resolve symbolic links. Only resolve references to ‘/./’, ‘/../’ and
remove extra ‘/’ characters. When combined with the -m option, realpath
operates only on the file name, and does not touch any actual file.

‘-z’
‘--zero’ Output a zero byte (ASCII NUL) at the end of each line, rather than a newline.

This option enables other programs to parse the output even when that output
would contain data with embedded newlines.

Exit status:

0 if all file names were printed without issue.
1 otherwise.

18.5.1 Realpath usage examples

By default, realpath prints the absolute file name of given files (symlinks are resolved,
words is resolved to american-english):

cd /home/user

realpath /usr/bin/sort /tmp/foo /usr/share/dict/words 1.txt

⇒ /usr/bin/sort

⇒ /tmp/foo

⇒ /usr/share/dict/american-english

⇒ /home/user/1.txt

174

With --relative-to, file names are printed relative to the given directory:

realpath --relative-to=/usr/bin \

/usr/bin/sort /tmp/foo /usr/share/dict/words 1.txt

⇒ sort

⇒ ../../tmp/foo

⇒ ../share/dict/american-english

⇒ ../../home/user/1.txt

With --relative-base, relative file names are printed if the resolved file name is below
the given base directory. For files outside the base directory absolute file names are printed:

realpath --relative-base=/usr \

/usr/bin/sort /tmp/foo /usr/share/dict/words 1.txt

⇒ bin/sort

⇒ /tmp/foo

⇒ share/dict/american-english

⇒ /home/user/1.txt

When both --relative-to=DIR1 and --relative-base=DIR2 are used, file names are
printed relative to dir1 if they are located below dir2. If the files are not below dir2, they
are printed as absolute file names:

realpath --relative-to=/usr/bin --relative-base=/usr \

/usr/bin/sort /tmp/foo /usr/share/dict/words 1.txt

⇒ sort

⇒ /tmp/foo

⇒ ../share/dict/american-english

⇒ /home/user/1.txt

When both --relative-to=DIR1 and --relative-base=DIR2 are used, dir1 must be
a subdirectory of dir2. Otherwise, realpath prints absolutes file names.

175

19 Working context

This section describes commands that display or alter the context in which you are work-
ing: the current directory, the terminal settings, and so forth. See also the user-related
commands in the next section.

19.1 pwd: Print working directory

pwd prints the name of the current directory. Synopsis:

pwd [option]...

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-L’
‘--logical’

If the contents of the environment variable PWD provide an absolute name of the
current directory with no ‘.’ or ‘..’ components, but possibly with symbolic
links, then output those contents. Otherwise, fall back to default -P handling.

‘-P’
‘--physical’

Print a fully resolved name for the current directory. That is, all components of
the printed name will be actual directory names—none will be symbolic links.

If -L and -P are both given, the last one takes precedence. If neither option is given,
then this implementation uses -P as the default unless the POSIXLY_CORRECT environment
variable is set.

Due to shell aliases and built-in pwd functions, using an unadorned pwd interactively or
in a script may get you different functionality than that described here. Invoke it via env

(i.e., env pwd ...) to avoid interference from the shell.

An exit status of zero indicates success, and a nonzero value indicates failure.

19.2 stty: Print or change terminal characteristics

stty prints or changes terminal characteristics, such as baud rate. Synopses:

stty [option] [setting]...

stty [option]

If given no line settings, stty prints the baud rate, line discipline number (on systems
that support it), and line settings that have been changed from the values set by ‘stty
sane’. By default, mode reading and setting are performed on the tty line connected to
standard input, although this can be modified by the --file option.

stty accepts many non-option arguments that change aspects of the terminal line oper-
ation, as described below.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-a’
‘--all’ Print all current settings in human-readable form. This option may not be used

in combination with any line settings.

Chapter 19: Working context 176

‘-F device’
‘--file=device’

Set the line opened by the file name specified in device instead of the tty line
connected to standard input. This option is necessary because opening a POSIX
tty requires use of the O_NONDELAY flag to prevent a POSIX tty from blocking
until the carrier detect line is high if the clocal flag is not set. Hence, it is not
always possible to allow the shell to open the device in the traditional manner.

‘-g’
‘--save’ Print all current settings in a form that can be used as an argument to another

stty command to restore the current settings. This option may not be used in
combination with any line settings.

Many settings can be turned off by preceding them with a ‘-’. Such arguments are
marked below with “May be negated” in their description. The descriptions themselves
refer to the positive case, that is, when not negated (unless stated otherwise, of course).

Some settings are not available on all POSIX systems, since they use extensions. Such
arguments are marked below with “Non-POSIX” in their description. On non-POSIX
systems, those or other settings also may not be available, but it’s not feasible to document
all the variations: just try it and see.

stty is installed only on platforms with the POSIX terminal interface, so portable scripts
should not rely on its existence on non-POSIX platforms.

An exit status of zero indicates success, and a nonzero value indicates failure.

19.2.1 Control settings

Control settings:

‘parenb’ Generate parity bit in output and expect parity bit in input. May be negated.

‘parodd’ Set odd parity (even if negated). May be negated.

‘cmspar’ Use "stick" (mark/space) parity. If parodd is set, the parity bit is always 1; if
parodd is not set, the parity bit is always zero. Non-POSIX. May be negated.

‘cs5’
‘cs6’
‘cs7’
‘cs8’ Set character size to 5, 6, 7, or 8 bits.

‘hup’
‘hupcl’ Send a hangup signal when the last process closes the tty. May be negated.

‘cstopb’ Use two stop bits per character (one if negated). May be negated.

‘cread’ Allow input to be received. May be negated.

‘clocal’ Disable modem control signals. May be negated.

‘crtscts’ Enable RTS/CTS flow control. Non-POSIX. May be negated.

‘cdtrdsr’ Enable DTR/DSR flow control. Non-POSIX. May be negated.

Chapter 19: Working context 177

19.2.2 Input settings

These settings control operations on data received from the terminal.

‘ignbrk’ Ignore break characters. May be negated.

‘brkint’ Make breaks cause an interrupt signal. May be negated.

‘ignpar’ Ignore characters with parity errors. May be negated.

‘parmrk’ Mark parity errors (with a 255-0-character sequence). May be negated.

‘inpck’ Enable input parity checking. May be negated.

‘istrip’ Clear high (8th) bit of input characters. May be negated.

‘inlcr’ Translate newline to carriage return. May be negated.

‘igncr’ Ignore carriage return. May be negated.

‘icrnl’ Translate carriage return to newline. May be negated.

‘iutf8’ Assume input characters are UTF-8 encoded. May be negated.

‘ixon’ Enable XON/XOFF flow control (that is, Ctrl-S/Ctrl-Q). May be negated.

‘ixoff’
‘tandem’ Enable sending of stop character when the system input buffer is almost full,

and start character when it becomes almost empty again. May be negated.

‘iuclc’ Translate uppercase characters to lowercase. Non-POSIX. May be negated.
Note ilcuc is not implemented, as one would not be able to issue almost any
(lowercase) Unix command, after invoking it.

‘ixany’ Allow any character to restart output (only the start character if negated).
Non-POSIX. May be negated.

‘imaxbel’ Enable beeping and not flushing input buffer if a character arrives when the
input buffer is full. Non-POSIX. May be negated.

19.2.3 Output settings

These settings control operations on data sent to the terminal.

‘opost’ Postprocess output. May be negated.

‘olcuc’ Translate lowercase characters to uppercase. Non-POSIX. May be negated.
(Note ouclc is not currently implemented.)

‘ocrnl’ Translate carriage return to newline. Non-POSIX. May be negated.

‘onlcr’ Translate newline to carriage return-newline. Non-POSIX. May be negated.

‘onocr’ Do not print carriage returns in the first column. Non-POSIX. May be negated.

‘onlret’ Newline performs a carriage return. Non-POSIX. May be negated.

‘ofill’ Use fill (padding) characters instead of timing for delays. Non-POSIX. May be
negated.

‘ofdel’ Use ASCII DEL characters for fill instead of ASCII NUL characters. Non-
POSIX. May be negated.

Chapter 19: Working context 178

‘nl1’
‘nl0’ Newline delay style. Non-POSIX.

‘cr3’
‘cr2’
‘cr1’
‘cr0’ Carriage return delay style. Non-POSIX.

‘tab3’
‘tab2’
‘tab1’
‘tab0’ Horizontal tab delay style. Non-POSIX.

‘bs1’
‘bs0’ Backspace delay style. Non-POSIX.

‘vt1’
‘vt0’ Vertical tab delay style. Non-POSIX.

‘ff1’
‘ff0’ Form feed delay style. Non-POSIX.

19.2.4 Local settings

‘isig’ Enable interrupt, quit, and suspend special characters. May be negated.

‘icanon’ Enable erase, kill, werase, and rprnt special characters. May be negated.

‘iexten’ Enable non-POSIX special characters. May be negated.

‘echo’ Echo input characters. May be negated.

‘echoe’
‘crterase’

Echo erase characters as backspace-space-backspace. May be negated.

‘echok’ Echo a newline after a kill character. May be negated.

‘echonl’ Echo newline even if not echoing other characters. May be negated.

‘noflsh’ Disable flushing after interrupt and quit special characters. May be negated.

‘xcase’ Enable input and output of uppercase characters by preceding their lowercase
equivalents with ‘\’, when icanon is set. Non-POSIX. May be negated.

‘tostop’ Stop background jobs that try to write to the terminal. Non-POSIX. May be
negated.

‘echoprt’
‘prterase’

Echo erased characters backward, between ‘\’ and ‘/’. Non-POSIX. May be
negated.

‘echoctl’
‘ctlecho’ Echo control characters in hat notation (‘^c’) instead of literally. Non-POSIX.

May be negated.

Chapter 19: Working context 179

‘echoke’
‘crtkill’ Echo the kill special character by erasing each character on the line as indi-

cated by the echoprt and echoe settings, instead of by the echoctl and echok

settings. Non-POSIX. May be negated.

‘extproc’ Enable ‘LINEMODE’, which is used to avoid echoing each character over high
latency links. See also Internet RFC 1116 (https://tools.ietf.org/search/
rfc1116). Non-POSIX. May be negated.

‘flusho’ Discard output. Note this setting is currently ignored on GNU/Linux systems.
Non-POSIX. May be negated.

19.2.5 Combination settings

Combination settings:

‘evenp’
‘parity’ Same as parenb -parodd cs7. May be negated. If negated, same as -parenb

cs8.

‘oddp’ Same as parenb parodd cs7. May be negated. If negated, same as -parenb

cs8.

‘nl’ Same as -icrnl -onlcr. May be negated. If negated, same as icrnl -inlcr

-igncr onlcr -ocrnl -onlret.

‘ek’ Reset the erase and kill special characters to their default values.

‘sane’ Same as:

cread -ignbrk brkint -inlcr -igncr icrnl

icanon iexten echo echoe echok -echonl -noflsh

-ixoff -iutf8 -iuclc -ixany imaxbel -xcase -olcuc -ocrnl

opost -ofill onlcr -onocr -onlret nl0 cr0 tab0 bs0 vt0 ff0

isig -tostop -ofdel -echoprt echoctl echoke -extproc

and also sets all special characters to their default values.

‘cooked’ Same as brkint ignpar istrip icrnl ixon opost isig icanon, plus sets the
eof and eol characters to their default values if they are the same as the min

and time characters. May be negated. If negated, same as raw.

‘raw’ Same as:

-ignbrk -brkint -ignpar -parmrk -inpck -istrip

-inlcr -igncr -icrnl -ixon -ixoff -icanon -opost

-isig -iuclc -ixany -imaxbel -xcase min 1 time 0

May be negated. If negated, same as cooked.

‘cbreak’ Same as -icanon. May be negated. If negated, same as icanon.

‘pass8’ Same as -parenb -istrip cs8. May be negated. If negated, same as parenb
istrip cs7.

‘litout’ Same as -parenb -istrip -opost cs8. May be negated. If negated, same as
parenb istrip opost cs7.

https://tools.ietf.org/search/rfc1116
https://tools.ietf.org/search/rfc1116

Chapter 19: Working context 180

‘decctlq’ Same as -ixany. Non-POSIX. May be negated.

‘tabs’ Same as tab0. Non-POSIX. May be negated. If negated, same as tab3.

‘lcase’
‘LCASE’ Same as xcase iuclc olcuc. Non-POSIX. May be negated. (Used for termi-

nals with uppercase characters only.)

‘crt’ Same as echoe echoctl echoke.

‘dec’ Same as echoe echoctl echoke -ixany intr ^C erase ^? kill C-u.

19.2.6 Special characters

The special characters’ default values vary from system to system. They are set with the
syntax ‘name value’, where the names are listed below and the value can be given either
literally, in hat notation (‘^c’), or as an integer which may start with ‘0x’ to indicate
hexadecimal, ‘0’ to indicate octal, or any other digit to indicate decimal.

For GNU stty, giving a value of ^- or undef disables that special character. (This is
incompatible with Ultrix stty, which uses a value of ‘u’ to disable a special character. GNU
stty treats a value ‘u’ like any other, namely to set that special character to U.)

‘intr’ Send an interrupt signal.

‘quit’ Send a quit signal.

‘erase’ Erase the last character typed.

‘kill’ Erase the current line.

‘eof’ Send an end of file (terminate the input).

‘eol’ End the line.

‘eol2’ Alternate character to end the line. Non-POSIX.

‘discard’ Alternate character to toggle discarding of output. Non-POSIX.

‘swtch’ Switch to a different shell layer. Non-POSIX.

‘status’ Send an info signal. Not currently supported on Linux. Non-POSIX.

‘start’ Restart the output after stopping it.

‘stop’ Stop the output.

‘susp’ Send a terminal stop signal.

‘dsusp’ Send a terminal stop signal after flushing the input. Non-POSIX.

‘rprnt’ Redraw the current line. Non-POSIX.

‘werase’ Erase the last word typed. Non-POSIX.

‘lnext’ Enter the next character typed literally, even if it is a special character. Non-
POSIX.

Chapter 19: Working context 181

19.2.7 Special settings

‘min n’ Set the minimum number of characters that will satisfy a read until the time
value has expired, when -icanon is set.

‘time n’ Set the number of tenths of a second before reads time out if the minimum
number of characters have not been read, when -icanon is set.

‘ispeed n’ Set the input speed to n.

‘ospeed n’ Set the output speed to n.

‘rows n’ Tell the tty kernel driver that the terminal has n rows. Non-POSIX.

‘cols n’
‘columns n’

Tell the kernel that the terminal has n columns. Non-POSIX.

‘drain’ Apply settings after first waiting for pending output to be transmitted. This
is enabled by default for GNU stty. It is useful to disable this option in cases
where the system may be in a state where serial transmission is not possible.
For example, if the system has received the ‘DC3’ character with ixon (software
flow control) enabled, then stty would block without -drain being specified.
May be negated. Non-POSIX.

‘size’ Print the number of rows and columns that the kernel thinks the terminal has.
(Systems that don’t support rows and columns in the kernel typically use the
environment variables LINES and COLUMNS instead; however, GNU stty does
not know anything about them.) Non-POSIX.

‘line n’ Use line discipline n. Non-POSIX.

‘speed’ Print the terminal speed.

‘n’ Set the input and output speeds to n. n can be one of: 0 50 75 110 134 134.5
150 200 300 600 1200 1800 2400 4800 9600 19200 38400 exta extb. exta

is the same as 19200; extb is the same as 38400. Many systems, including
GNU/Linux, support higher speeds. The stty command includes support for
speeds of 57600, 115200, 230400, 460800, 500000, 576000, 921600, 1000000,
1152000, 1500000, 2000000, 2500000, 3000000, 3500000, or 4000000 where the
system supports these. 0 hangs up the line if -clocal is set.

19.3 printenv: Print all or some environment variables

printenv prints environment variable values. Synopsis:

printenv [option] [variable]...

If no variables are specified, printenv prints the value of every environment variable.
Otherwise, it prints the value of each variable that is set, and nothing for those that are
not set.

The program accepts the following option. Also see Chapter 2 [Common options], page 2.

‘-0’
‘--null’ Output a zero byte (ASCII NUL) at the end of each line, rather than a newline.

This option enables other programs to parse the output even when that output
would contain data with embedded newlines.

Chapter 19: Working context 182

Exit status:

0 if all variables specified were found
1 if at least one specified variable was not found
2 if a write error occurred

19.4 tty: Print file name of terminal on standard input

tty prints the file name of the terminal connected to its standard input. It prints ‘not a

tty’ if standard input is not a terminal. Synopsis:

tty [option]...

The program accepts the following option. Also see Chapter 2 [Common options], page 2.

‘-s’
‘--silent’
‘--quiet’ Print nothing; only return an exit status.

Exit status:

0 if standard input is a terminal
1 if standard input is a non-terminal file
2 if given incorrect arguments
3 if a write error occurs

183

20 User information

This section describes commands that print user-related information: logins, groups, and
so forth.

20.1 id: Print user identity

id prints information about the given user, or the process running it if no user is specified.
Synopsis:

id [option]... [user]...

user can be either a user ID or a name, with name look-up taking precedence unless the
ID is specified with a leading ‘+’. See Section 2.6 [Disambiguating names and IDs], page 7.

By default, it prints the real user ID, real group ID, effective user ID if different from the
real user ID, effective group ID if different from the real group ID, and supplemental group
IDs. In addition, if SELinux is enabled and the POSIXLY_CORRECT environment variable is
not set, then print ‘context=c’, where c is the security context.

Each of these numeric values is preceded by an identifying string and followed by the
corresponding user or group name in parentheses.

The options cause id to print only part of the above information. Also see Chapter 2
[Common options], page 2.

‘-g’
‘--group’ Print only the group ID.

‘-G’
‘--groups’

Print only the group ID and the supplementary groups.

‘-n’
‘--name’ Print the user or group name instead of the ID number. Requires -u, -g, or -G.

‘-r’
‘--real’ Print the real, instead of effective, user or group ID. Requires -u, -g, or -G.

‘-u’
‘--user’ Print only the user ID.

‘-Z’
‘--context’

Print only the security context of the process, which is generally the user’s secu-
rity context inherited from the parent process. If neither SELinux or SMACK
is enabled then print a warning and set the exit status to 1.

‘-z’
‘--zero’ Delimit output items with ASCII NUL characters. This option is not permit-

ted when using the default format. When multiple users are specified, and
the --groups option is also in effect, groups are delimited with a single NUL
character, while users are delimited with two NUL characters.

Example:

$ id -Gn --zero

users <NUL> devs <NUL>

Chapter 20: User information 184

Primary and supplementary groups for a process are normally inherited from its parent
and are usually unchanged since login. This means that if you change the group database
after logging in, id will not reflect your changes within your existing login session. Running
id with a user argument causes the user and group database to be consulted afresh, and so
will give a different result.

An exit status of zero indicates success, and a nonzero value indicates failure.

20.2 logname: Print current login name

logname prints the calling user’s name, as found in a system-maintained file (often
/var/run/utmp or /etc/utmp), and exits with a status of 0. If there is no entry for the
calling process, logname prints an error message and exits with a status of 1.

The only options are --help and --version. See Chapter 2 [Common options], page 2.

An exit status of zero indicates success, and a nonzero value indicates failure.

20.3 whoami: Print effective user ID

whoami prints the user name associated with the current effective user ID. It is equivalent
to the command ‘id -un’.

The only options are --help and --version. See Chapter 2 [Common options], page 2.

An exit status of zero indicates success, and a nonzero value indicates failure.

20.4 groups: Print group names a user is in

groups prints the names of the primary and any supplementary groups for each given
username, or the current process if no names are given. If more than one name is given,
the name of each user is printed before the list of that user’s groups and the user name is
separated from the group list by a colon. Synopsis:

groups [username]...

The group lists are equivalent to the output of the command ‘id -Gn’.

The only options are --help and --version. See Chapter 2 [Common options], page 2.

Primary and supplementary groups for a process are normally inherited from its parent
and are usually unchanged since login. This means that if you change the group database
after logging in, groups will not reflect your changes within your existing login session.
Running groups with a list of users causes the user and group database to be consulted
afresh, and so will give a different result.

An exit status of zero indicates success, and a nonzero value indicates failure.

20.5 users: Print login names of users currently logged in

users prints on a single line a blank-separated list of user names of users currently logged
in to the current host. Each user name corresponds to a login session, so if a user has
more than one login session, that user’s name will appear the same number of times in the
output. Synopsis:

users [file]

Chapter 20: User information 185

With no file argument, users extracts its information from a system-maintained file
(often /var/run/utmp or /etc/utmp). If a file argument is given, users uses that file
instead. A common choice is /var/log/wtmp.

The only options are --help and --version. See Chapter 2 [Common options], page 2.

The users command is installed only on platforms with the POSIX <utmpx.h> include
file or equivalent, so portable scripts should not rely on its existence on non-POSIX plat-
forms.

An exit status of zero indicates success, and a nonzero value indicates failure.

20.6 who: Print who is currently logged in

who prints information about users who are currently logged on. Synopsis:

who [option] [file] [am i]

If given no non-option arguments, who prints the following information for each user
currently logged on: login name, terminal line, login time, and remote hostname or X
display.

If given one non-option argument, who uses that instead of a default system-maintained
file (often /var/run/utmp or /etc/utmp) as the name of the file containing the record of
users logged on. /var/log/wtmp is commonly given as an argument to who to look at who
has previously logged on.

If given two non-option arguments, who prints only the entry for the user running it
(determined from its standard input), preceded by the hostname. Traditionally, the two
arguments given are ‘am i’, as in ‘who am i’.

Timestamps are listed according to the time zone rules specified by the TZ environment
variable, or by the system default rules if TZ is not set. See Section “Specifying the Time
Zone with TZ” in The GNU C Library Reference Manual.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-a’
‘--all’ Same as ‘-b -d --login -p -r -t -T -u’.

‘-b’
‘--boot’ Print the date and time of last system boot.

‘-d’
‘--dead’ Print information corresponding to dead processes.

‘-H’
‘--heading’

Print a line of column headings.

‘-l’
‘--login’ List only the entries that correspond to processes via which the system is waiting

for a user to login. The user name is always ‘LOGIN’.

‘--lookup’
Attempt to canonicalize hostnames found in utmp through a DNS lookup. This
is not the default because it can cause significant delays on systems with auto-
matic dial-up internet access.

186

‘-m’ Same as ‘who am i’.

‘-p’
‘--process’

List active processes spawned by init.

‘-q’
‘--count’ Print only the login names and the number of users logged on. Overrides all

other options.

‘-r’
‘--runlevel’

Print the current (and maybe previous) run-level of the init process.

‘-s’ Ignored; for compatibility with other versions of who.

‘-t’
‘--time’ Print last system clock change.

‘-u’ After the login time, print the number of hours and minutes that the user has
been idle. ‘.’ means the user was active in the last minute. ‘old’ means the
user has been idle for more than 24 hours.

‘-w’
‘-T’
‘--mesg’
‘--message’
‘--writable’

After each login name print a character indicating the user’s message status:

‘+’ allowing write messages
‘-’ disallowing write messages
‘?’ cannot find terminal device

The who command is installed only on platforms with the POSIX <utmpx.h> include file
or equivalent, so portable scripts should not rely on its existence on non-POSIX platforms.

An exit status of zero indicates success, and a nonzero value indicates failure.

187

21 System context

This section describes commands that print or change system-wide information.

21.1 date: Print or set system date and time

Synopses:

date [option]... [+format]

date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]]

Invoking date with no format argument is equivalent to invoking it with a default format
that depends on the LC_TIME locale category. In the default C locale, this format is ‘’+%a
%b %e %H:%M:%S %Z %Y’’, so the output looks like ‘Thu Mar 3 13:47:51 PST 2005’.

Normally, date uses the time zone rules indicated by the TZ environment variable, or
the system default rules if TZ is not set. See Section “Specifying the Time Zone with TZ”
in The GNU C Library Reference Manual.

If given an argument that starts with a ‘+’, date prints the current date and time (or
the date and time specified by the --date option, see below) in the format defined by
that argument, which is similar to that of the strftime function. Except for conversion
specifiers, which start with ‘%’, characters in the format string are printed unchanged. The
conversion specifiers are described below.

An exit status of zero indicates success, and a nonzero value indicates failure.

21.1.1 Time conversion specifiers

date conversion specifiers related to times.

‘%H’ hour (‘00’. . . ‘23’)

‘%I’ hour (‘01’. . . ‘12’)

‘%k’ hour, space padded (‘ 0’. . . ‘23’); equivalent to ‘%_H’. This is a GNU extension.

‘%l’ hour, space padded (‘ 1’. . . ‘12’); equivalent to ‘%_I’. This is a GNU extension.

‘%M’ minute (‘00’. . . ‘59’)

‘%N’ nanoseconds (‘000000000’. . . ‘999999999’). This is a GNU extension.

‘%p’ locale’s equivalent of either ‘AM’ or ‘PM’; blank in many locales. Noon is treated
as ‘PM’ and midnight as ‘AM’.

‘%P’ like ‘%p’, except lower case. This is a GNU extension.

‘%r’ locale’s 12-hour clock time (e.g., ‘11:11:04 PM’)

‘%R’ 24-hour hour and minute. Same as ‘%H:%M’.

‘%s’ seconds since the epoch, i.e., since 1970-01-01 00:00:00 UTC. Leap seconds
are not counted unless leap second support is available. See [%s-examples],
page 193, for examples. This is a GNU extension.

‘%S’ second (‘00’. . . ‘60’). This may be ‘60’ if leap seconds are supported.

‘%T’ 24-hour hour, minute, and second. Same as ‘%H:%M:%S’.

Chapter 21: System context 188

‘%X’ locale’s time representation (e.g., ‘23:13:48’)

‘%z’ Four-digit numeric time zone, e.g., ‘-0600’ or ‘+0530’, or ‘-0000’ if no time
zone is determinable. This value reflects the numeric time zone appropriate
for the current time, using the time zone rules specified by the TZ environment
variable. A time zone is not determinable if its numeric offset is zero and its
abbreviation begins with ‘-’. The time (and optionally, the time zone rules)
can be overridden by the --date option.

‘%:z’ Numeric time zone with ‘:’, e.g., ‘-06:00’ or ‘+05:30’), or ‘-00:00’ if no time
zone is determinable. This is a GNU extension.

‘%::z’ Numeric time zone to the nearest second with ‘:’ (e.g., ‘-06:00:00’ or
‘+05:30:00’), or ‘-00:00:00’ if no time zone is determinable. This is a GNU
extension.

‘%:::z’ Numeric time zone with ‘:’ using the minimum necessary precision (e.g., ‘-06’,
‘+05:30’, or ‘-04:56:02’), or ‘-00’ if no time zone is determinable. This is a
GNU extension.

‘%Z’ alphabetic time zone abbreviation (e.g., ‘EDT’), or nothing if no time zone is
determinable. See ‘%z’ for how it is determined.

21.1.2 Date conversion specifiers

date conversion specifiers related to dates.

‘%a’ locale’s abbreviated weekday name (e.g., ‘Sun’)

‘%A’ locale’s full weekday name, variable length (e.g., ‘Sunday’)

‘%b’ locale’s abbreviated month name (e.g., ‘Jan’)

‘%B’ locale’s full month name, variable length (e.g., ‘January’)

‘%c’ locale’s date and time (e.g., ‘Thu Mar 3 23:05:25 2005’)

‘%C’ century. This is like ‘%Y’, except the last two digits are omitted. For example,
it is ‘20’ if ‘%Y’ is ‘2000’, and is ‘-0’ if ‘%Y’ is ‘-001’. It is normally at least two
characters, but it may be more.

‘%d’ day of month (e.g., ‘01’)

‘%D’ date; same as ‘%m/%d/%y’

‘%e’ day of month, space padded; same as ‘%_d’

‘%F’ full date in ISO 8601 format; like ‘%+4Y-%m-%d’ except that any flags or field
width override the ‘+’ and (after subtracting 6) the ‘4’. This is a good choice
for a date format, as it is standard and is easy to sort in the usual case where
years are in the range 0000. . . 9999.

‘%g’ year corresponding to the ISO week number, but without the century (range
‘00’ through ‘99’). This has the same format and value as ‘%y’, except that if
the ISO week number (see ‘%V’) belongs to the previous or next year, that year
is used instead.

Chapter 21: System context 189

‘%G’ year corresponding to the ISO week number. This has the same format and
value as ‘%Y’, except that if the ISO week number (see ‘%V’) belongs to the
previous or next year, that year is used instead. It is normally useful only if
‘%V’ is also used; for example, the format ‘%G-%m-%d’ is probably a mistake,
since it combines the ISO week number year with the conventional month and
day.

‘%h’ same as ‘%b’

‘%j’ day of year (‘001’. . . ‘366’)

‘%m’ month (‘01’. . . ‘12’)

‘%q’ quarter of year (‘1’. . . ‘4’)

‘%u’ day of week (‘1’. . . ‘7’) with ‘1’ corresponding to Monday

‘%U’ week number of year, with Sunday as the first day of the week (‘00’. . . ‘53’).
Days in a new year preceding the first Sunday are in week zero.

‘%V’ ISO week number, that is, the week number of year, with Monday as the first
day of the week (‘01’. . . ‘53’). If the week containing January 1 has four or
more days in the new year, then it is considered week 1; otherwise, it is week 53
of the previous year, and the next week is week 1. (See the ISO 8601 standard.)

‘%w’ day of week (‘0’. . . ‘6’) with 0 corresponding to Sunday

‘%W’ week number of year, with Monday as first day of week (‘00’. . . ‘53’). Days in
a new year preceding the first Monday are in week zero.

‘%x’ locale’s date representation (e.g., ‘12/31/99’)

‘%y’ last two digits of year (‘00’. . . ‘99’)

‘%Y’ year. This is normally at least four characters, but it may be more. Year ‘0000’
precedes year ‘0001’, and year ‘-001’ precedes year ‘0000’.

21.1.3 Literal conversion specifiers

date conversion specifiers that produce literal strings.

‘%%’ a literal %

‘%n’ a newline

‘%t’ a horizontal tab

21.1.4 Padding and other flags

Unless otherwise specified, date normally pads numeric fields with zeros, so that, for ex-
ample, numeric months are always output as two digits. Seconds since the epoch are not
padded, though, since there is no natural width for them.

The following optional flags can appear after the ‘%’:

‘-’ (hyphen) Do not pad the field; useful if the output is intended for human
consumption. This is a GNU extension.

Chapter 21: System context 190

‘_’ (underscore) Pad with spaces; useful if you need a fixed number of characters
in the output, but zeros are too distracting. This is a GNU extension.

‘0’ (zero) Pad with zeros even if the conversion specifier would normally pad with
spaces.

‘+’ Pad with zeros, like ‘0’. In addition, precede any year number with ‘+’ if
it exceeds 9999 or if its field width exceeds 4; similarly, precede any century
number with ‘+’ if it exceeds 99 or if its field width exceeds 2. This supports
ISO 8601 formats for dates far in the future; for example, the command date

--date=12019-02-25 +%+13F outputs the string ‘+012019-02-25’.

‘^’ Use upper case characters if possible. This is a GNU extension.

‘#’ Use opposite case characters if possible. A field that is normally upper case
becomes lower case, and vice versa. This is a GNU extension.

Here are some examples of padding:

date +%d/%m -d "Feb 1"

⇒ 01/02

date +%-d/%-m -d "Feb 1"

⇒ 1/2

date +%_d/%_m -d "Feb 1"

⇒ 1/ 2

You can optionally specify the field width (after any flag, if present) as a decimal number.
If the natural size of the output of the field has less than the specified number of characters,
the result is written right adjusted and padded to the given size. For example, ‘%9B’ prints
the right adjusted month name in a field of width 9.

An optional modifier can follow the optional flag and width specification. The modifiers
are:

‘E’ Use the locale’s alternate representation for date and time. This modifier applies
to the ‘%c’, ‘%C’, ‘%x’, ‘%X’, ‘%y’ and ‘%Y’ conversion specifiers. In a Japanese
locale, for example, ‘%Ex’ might yield a date format based on the Japanese
Emperors’ reigns.

‘O’ Use the locale’s alternate numeric symbols for numbers. This modifier applies
only to numeric conversion specifiers.

If the format supports the modifier but no alternate representation is available, it is
ignored.

POSIX specifies the behavior of flags and field widths only for ‘%C’, ‘%F’, ‘%G’, and ‘%Y’
(all without modifiers), and requires a flag to be present if and only if a field width is also
present. Other combinations of flags, field widths and modifiers are GNU extensions.

21.1.5 Setting the time

If given an argument that does not start with ‘+’, date sets the system clock to the date and
time specified by that argument (as described below). You must have appropriate privileges
to set the system clock. Note for changes to persist across a reboot, the hardware clock
may need to be updated from the system clock, which might not happen automatically on
your system.

Chapter 21: System context 191

The argument must consist entirely of digits, which have the following meaning:

‘MM’ month

‘DD’ day within month

‘hh’ hour

‘mm’ minute

‘CC’ first two digits of year (optional)

‘YY’ last two digits of year (optional)

‘ss’ second (optional)

Note, the --date and --set options may not be used with an argument in the above
format. The --universal option may be used with such an argument to indicate that the
specified date and time are relative to Universal Time rather than to the local time zone.

21.1.6 Options for date

The program accepts the following options. Also see Chapter 2 [Common options], page 2.

‘-d datestr’
‘--date=datestr’

Display the date and time specified in datestr instead of the current date
and time. datestr can be in almost any common format. It can contain
month names, time zones, ‘am’ and ‘pm’, ‘yesterday’, etc. For example,
--date="2004-02-27 14:19:13.489392193 +0530" specifies the instant of
time that is 489,392,193 nanoseconds after February 27, 2004 at 2:19:13 PM in
a time zone that is 5 hours and 30 minutes east of UTC.
Note: input currently must be in locale independent format. E.g., the
LC TIME=C below is needed to print back the correct date in many locales:

date -d "$(LC_TIME=C date)"

See Chapter 29 [Date input formats], page 236.

‘--debug’ Annotate the parsed date, display the effective time zone, and warn about
potential misuse.

‘-f datefile’
‘--file=datefile’

Parse each line in datefile as with -d and display the resulting date and time. If
datefile is ‘-’, use standard input. This is useful when you have many dates to
process, because the system overhead of starting up the date executable many
times can be considerable.

‘-I[timespec]’
‘--iso-8601[=timespec]’

Display the date using an ISO 8601 format, ‘%Y-%m-%d’.

The argument timespec specifies the number of additional terms of the time to
include. It can be one of the following:

‘auto’ Print just the date. This is the default if timespec is omitted.

Chapter 21: System context 192

‘hours’ Append the hour of the day to the date.

‘minutes’ Append the hours and minutes.

‘seconds’ Append the hours, minutes and seconds.

‘ns’ Append the hours, minutes, seconds and nanoseconds.

If showing any time terms, then include the time zone using the format ‘%:z’.
This format is always suitable as input for the --date (-d) and --file (-f)
options, regardless of the current locale.

‘-r file’
‘--reference=file’

Display the date and time of the last modification of file, instead of the current
date and time.

‘-R’
‘--rfc-email’

Display the date and time using the format ‘%a, %d %b %Y %H:%M:%S %z’, eval-
uated in the C locale so abbreviations are always in English. For example:

Fri, 09 Sep 2005 13:51:39 -0700

This format conforms to Internet RFCs 5322 (https://tools.ietf.org/
search/rfc5322), 2822 (https://tools.ietf.org/search/rfc2822) and
822 (https://tools.ietf.org/search/rfc822), the current and previous
standards for Internet email. For compatibility with older versions of date,
--rfc-2822 and --rfc-822 are aliases for --rfc-email.

‘--rfc-3339=timespec’
Display the date using a format specified by Internet RFC 3339 (https://
tools.ietf.org/search/rfc3339). This is like --iso-8601, except that
a space rather than a ‘T’ separates dates from times. This format is always
suitable as input for the --date (-d) and --file (-f) options, regardless of
the current locale.The argument timespec specifies how much of the time to
include. It can be one of the following:

‘date’ Print just the full-date, e.g., ‘2005-09-14’. This is equivalent to
the format ‘%Y-%m-%d’.

‘seconds’ Print the full-date and full-time separated by a space, e.g.,
‘2005-09-14 00:56:06+05:30’. The output ends with a numeric
time-offset; here the ‘+05:30’ means that local time is five hours
and thirty minutes east of UTC. This is equivalent to the format
‘%Y-%m-%d %H:%M:%S%:z’.

‘ns’ Like ‘seconds’, but also print nanoseconds, e.g., ‘2005-09-14
00:56:06.998458565+05:30’. This is equivalent to the format
‘%Y-%m-%d %H:%M:%S.%N%:z’.

‘-s datestr’
‘--set=datestr’

Set the date and time to datestr. See -d above. See also Section 21.1.5 [Setting
the time], page 190.

https://tools.ietf.org/search/rfc5322
https://tools.ietf.org/search/rfc5322
https://tools.ietf.org/search/rfc2822
https://tools.ietf.org/search/rfc822
https://tools.ietf.org/search/rfc3339
https://tools.ietf.org/search/rfc3339

Chapter 21: System context 193

‘-u’
‘--utc’
‘--universal’

Use Universal Time by operating as if the TZ environment variable were set
to the string ‘UTC0’. UTC stands for Coordinated Universal Time, established
in 1960. Universal Time is often called “Greenwich Mean Time” (GMT) for
historical reasons. Typically, systems ignore leap seconds and thus implement
an approximation to UTC rather than true UTC.

21.1.7 Examples of date

Here are a few examples. Also see the documentation for the -d option in the previous
section.

• To print the date of the day before yesterday:

date --date=’2 days ago’

• To print the date of the day three months and one day hence:

date --date=’3 months 1 day’

• To print the day of year of Christmas in the current year:

date --date=’25 Dec’ +%j

• To print the current full month name and the day of the month:

date ’+%B %d’

But this may not be what you want because for the first nine days of the month, the
‘%d’ expands to a zero-padded two-digit field, for example ‘date -d 1may ’+%B %d’’ will
print ‘May 01’.

• To print a date without the leading zero for one-digit days of the month, you can use
the (GNU extension) ‘-’ flag to suppress the padding altogether:

date -d 1may ’+%B %-d’

• To print the current date and time in the format required by many non-GNU versions
of date when setting the system clock:

date +%m%d%H%M%Y.%S

• To set the system clock forward by two minutes:

date --set=’+2 minutes’

• To print the date in Internet RFC 5322 format, use ‘date --rfc-email’. Here is some
example output:

Fri, 09 Sep 2005 13:51:39 -0700

• To convert a date string to the number of seconds since the epoch (which is 1970-01-
01 00:00:00 UTC), use the --date option with the ‘%s’ format. That can be useful
in sorting and/or graphing and/or comparing data by date. The following command
outputs the number of the seconds since the epoch for the time two minutes after the
epoch:

date --date=’1970-01-01 00:02:00 +0000’ +%s

120

If you do not specify time zone information in the date string, date uses your computer’s
idea of the time zone when interpreting the string. For example, if your computer’s

Chapter 21: System context 194

time zone is that of Cambridge, Massachusetts, which was then 5 hours (i.e., 18,000
seconds) behind UTC:

local time zone used

date --date=’1970-01-01 00:02:00’ +%s

18120

• If you’re sorting or graphing dated data, your raw date values may be represented as
seconds since the epoch. But few people can look at the date ‘946684800’ and casually
note “Oh, that’s the first second of the year 2000 in Greenwich, England.”

date --date=’2000-01-01 UTC’ +%s

946684800

An alternative is to use the --utc (-u) option. Then you may omit ‘UTC’ from the
date string. Although this produces the same result for ‘%s’ and many other format
sequences, with a time zone offset different from zero, it would give a different result
for zone-dependent formats like ‘%z’.

date -u --date=2000-01-01 +%s

946684800

To convert such an unwieldy number of seconds back to a more readable form, use a
command like this:

local time zone used

date -d ’1970-01-01 UTC 946684800 seconds’ +"%Y-%m-%d %T %z"

1999-12-31 19:00:00 -0500

Or if you do not mind depending on the ‘@’ feature present since coreutils 5.3.0, you
could shorten this to:

date -d @946684800 +"%F %T %z"

1999-12-31 19:00:00 -0500

Often it is better to output UTC-relative date and time:

date -u -d ’1970-01-01 946684800 seconds’ +"%Y-%m-%d %T %z"

2000-01-01 00:00:00 +0000

• Typically the seconds count omits leap seconds, but some systems are exceptions.
Because leap seconds are not predictable, the mapping between the seconds count and
a future timestamp is not reliable on the atypical systems that include leap seconds in
their counts.

Here is how the two kinds of systems handle the leap second at 2012-06-30 23:59:60
UTC:

Typical systems ignore leap seconds:

date --date=’2012-06-30 23:59:59 +0000’ +%s

1341100799

date --date=’2012-06-30 23:59:60 +0000’ +%s

date: invalid date ’2012-06-30 23:59:60 +0000’

date --date=’2012-07-01 00:00:00 +0000’ +%s

1341100800

Atypical systems count leap seconds:

date --date=’2012-06-30 23:59:59 +0000’ +%s

1341100823

Chapter 21: System context 195

date --date=’2012-06-30 23:59:60 +0000’ +%s

1341100824

date --date=’2012-07-01 00:00:00 +0000’ +%s

1341100825

21.2 arch: Print machine hardware name

arch prints the machine hardware name, and is equivalent to ‘uname -m’. Synopsis:

arch [option]

The program accepts the Chapter 2 [Common options], page 2, only.

arch is not installed by default, so portable scripts should not rely on its existence.

An exit status of zero indicates success, and a nonzero value indicates failure.

21.3 nproc: Print the number of available processors

Print the number of processing units available to the current process, which may be less
than the number of online processors. If this information is not accessible, then print the
number of processors installed. If the OMP_NUM_THREADS or OMP_THREAD_LIMIT environment
variables are set, then they will determine the minimum and maximum returned value
respectively. The result is guaranteed to be greater than zero. Synopsis:

nproc [option]

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘--all’ Print the number of installed processors on the system, which may be
greater than the number online or available to the current process. The
OMP_NUM_THREADS or OMP_THREAD_LIMIT environment variables are not
honored in this case.

‘--ignore=number’
If possible, exclude this number of processing units.

An exit status of zero indicates success, and a nonzero value indicates failure.

21.4 uname: Print system information

uname prints information about the machine and operating system it is run on. If no options
are given, uname acts as if the -s option were given. Synopsis:

uname [option]...

If multiple options or -a are given, the selected information is printed in this order:

kernel-name nodename kernel-release kernel-version

machine processor hardware-platform operating-system

The information may contain internal spaces, so such output cannot be parsed reliably.
In the following example, release is ‘2.2.18ss.e820-bda652a #4 SMP Tue Jun 5 11:24:08

PDT 2001’:

uname -a

⇒ Linux dumdum 2.2.18 #4 SMP Tue Jun 5 11:24:08 PDT 2001 i686 unknown unknown GNU/Linux

Chapter 21: System context 196

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-a’
‘--all’ Print all of the below information, except omit the processor type and the

hardware platform name if they are unknown.

‘-i’
‘--hardware-platform’

Print the hardware platform name (sometimes called the hardware implemen-
tation). Print ‘unknown’ if this information is not available. Note this is non-
portable (even across GNU/Linux distributions).

‘-m’
‘--machine’

Print the machine hardware name (sometimes called the hardware class or
hardware type).

‘-n’
‘--nodename’

Print the network node hostname.

‘-p’
‘--processor’

Print the processor type (sometimes called the instruction set architecture or
ISA). Print ‘unknown’ if this information is not available. Note this is non-
portable (even across GNU/Linux distributions).

‘-o’
‘--operating-system’

Print the name of the operating system.

‘-r’
‘--kernel-release’

Print the kernel release.

‘-s’
‘--kernel-name’

Print the kernel name. POSIX 1003.1-2001 (see Section 2.13 [Standards con-
formance], page 11) calls this “the implementation of the operating system”,
because the POSIX specification itself has no notion of “kernel”. The kernel
name might be the same as the operating system name printed by the -o or
--operating-system option, but it might differ. Some operating systems (e.g.,
FreeBSD, HP-UX) have the same name as their underlying kernels; others (e.g.,
GNU/Linux, Solaris) do not.

‘-v’
‘--kernel-version’

Print the kernel version.

An exit status of zero indicates success, and a nonzero value indicates failure.

Chapter 21: System context 197

21.5 hostname: Print or set system name

With no arguments, hostname prints the name of the current host system. With one
argument, it sets the current host name to the specified string. You must have appropriate
privileges to set the host name. Synopsis:

hostname [name]

The only options are --help and --version. See Chapter 2 [Common options], page 2.

hostname is not installed by default, and other packages also supply a hostname com-
mand, so portable scripts should not rely on its existence or on the exact behavior docu-
mented above.

An exit status of zero indicates success, and a nonzero value indicates failure.

21.6 hostid: Print numeric host identifier

hostid prints the numeric identifier of the current host in hexadecimal. This command ac-
cepts no arguments. The only options are --help and --version. See Chapter 2 [Common
options], page 2.

For example, here’s what it prints on one system I use:

$ hostid

1bac013d

On that system, the 32-bit quantity happens to be closely related to the system’s Internet
address, but that isn’t always the case.

hostid is installed only on systems that have the gethostid function, so portable scripts
should not rely on its existence.

An exit status of zero indicates success, and a nonzero value indicates failure.

21.7 uptime: Print system uptime and load

uptime prints the current time, the system’s uptime, the number of logged-in users and the
current load average.

If an argument is specified, it is used as the file to be read to discover how many users
are logged in. If no argument is specified, a system default is used (uptime --help indicates
the default setting).

The only options are --help and --version. See Chapter 2 [Common options], page 2.

For example, here’s what it prints right now on one system I use:

$ uptime

14:07 up 3:35, 3 users, load average: 1.39, 1.15, 1.04

The precise method of calculation of load average varies somewhat between systems.
Some systems calculate it as the average number of runnable processes over the last 1,
5 and 15 minutes, but some systems also include processes in the uninterruptible sleep
state (that is, those processes which are waiting for disk I/O). The Linux kernel includes
uninterruptible processes.

uptime is installed only on platforms with infrastructure for obtaining the boot time,
and other packages also supply an uptime command, so portable scripts should not rely on
its existence or on the exact behavior documented above.

198

An exit status of zero indicates success, and a nonzero value indicates failure.

199

22 SELinux context

This section describes commands for operations with SELinux contexts.

22.1 chcon: Change SELinux context of file

chcon changes the SELinux security context of the selected files. Synopses:

chcon [option]... context file...

chcon [option]... [-u user] [-r role] [-l range] [-t type] file...

chcon [option]... --reference=rfile file...

Change the SELinux security context of each file to context. With --reference, change
the security context of each file to that of rfile.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘--dereference’
Do not affect symbolic links but what they refer to; this is the default.

‘-h’
‘--no-dereference’

Affect the symbolic links themselves instead of any referenced file.

‘--reference=rfile’
Use rfile’s security context rather than specifying a context value.

‘-R’
‘--recursive’

Operate on files and directories recursively.

‘--preserve-root’
Refuse to operate recursively on the root directory, /, when used together with
the --recursive option. See Section 2.11 [Treating / specially], page 10.

‘--no-preserve-root’
Do not treat the root directory, /, specially when operating recursively; this is
the default. See Section 2.11 [Treating / specially], page 10.

‘-H’ If --recursive (-R) is specified and a command line argument is a symbolic
link to a directory, traverse it.See Section 2.10 [Traversing symlinks], page 10.

‘-L’ In a recursive traversal, traverse every symbolic link to a directory that is
encountered.See Section 2.10 [Traversing symlinks], page 10.

‘-P’ Do not traverse any symbolic links. This is the default if none of -H, -L, or -P
is specified.See Section 2.10 [Traversing symlinks], page 10.

‘-v’
‘--verbose’

Output a diagnostic for every file processed.

‘-u user’
‘--user=user’

Set user user in the target security context.

Chapter 22: SELinux context 200

‘-r role’
‘--role=role’

Set role role in the target security context.

‘-t type’
‘--type=type’

Set type type in the target security context.

‘-l range’
‘--range=range’

Set range range in the target security context.

An exit status of zero indicates success, and a nonzero value indicates failure.

22.2 runcon: Run a command in specified SELinux context

runcon runs file in specified SELinux security context.

Synopses:

runcon context command [args]

runcon [-c] [-u user] [-r role] [-t type] [-l range] command [args]

Run command with completely-specified context, or with current or transitioned security
context modified by one or more of level, role, type and user.

If none of -c, -t, -u, -r, or -l is specified, the first argument is used as the complete
context. Any additional arguments after command are interpreted as arguments to the
command.

With neither context nor command, print the current security context.

Note also the setpriv command which can be used to set the NO NEW PRIVS bit
using setpriv --no-new-privs runcon ..., thus disallowing usage of a security context
with more privileges than the process would normally have.

runcon accepts the following options. Also see Chapter 2 [Common options], page 2.

‘-c’
‘--compute’

Compute process transition context before modifying.

‘-u user’
‘--user=user’

Set user user in the target security context.

‘-r role’
‘--role=role’

Set role role in the target security context.

‘-t type’
‘--type=type’

Set type type in the target security context.

‘-l range’
‘--range=range’

Set range range in the target security context.

201

Exit status:

126 if command is found but cannot be invoked
127 if runcon itself fails or if command cannot be found
the exit status of command otherwise

202

23 Modified command invocation

This section describes commands that run other commands in some context different than
the current one: a modified environment, as a different user, etc.

23.1 chroot: Run a command with a different root directory

chroot runs a command with a specified root directory. On many systems, only the super-
user can do this.1. Synopses:

chroot option newroot [command [args]...]

chroot option

Ordinarily, file names are looked up starting at the root of the directory structure, i.e.,
/. chroot changes the root to the directory newroot (which must exist), then changes the
working directory to /, and finally runs command with optional args. If command is not
specified, the default is the value of the SHELL environment variable or /bin/sh if not set,
invoked with the -i option. command must not be a special built-in utility (see Section 2.12
[Special built-in utilities], page 10).

The program accepts the following options. Also see Chapter 2 [Common options],
page 2. Options must precede operands.

‘--groups=groups’
Use this option to override the supplementary groups to be used by the new
process. The items in the list (names or numeric IDs) must be separated by
commas. Use ‘--groups=’’’ to disable the supplementary group look-up im-
plicit in the --userspec option.

‘--userspec=user[:group]’
By default, command is run with the same credentials as the invoking process.
Use this option to run it as a different user and/or with a different primary
group. If a user is specified then the supplementary groups are set according
to the system defined list for that user, unless overridden with the --groups

option.

‘--skip-chdir’
Use this option to not change the working directory to / after changing the root
directory to newroot, i.e., inside the chroot. This option is only permitted when
newroot is the old / directory, and therefore is mostly useful together with the
--groups and --userspec options to retain the previous working directory.

The user and group name look-up performed by the --userspec and --groups options,
is done both outside and inside the chroot, with successful look-ups inside the chroot taking
precedence. If the specified user or group items are intended to represent a numeric ID,
then a name to ID resolving step is avoided by specifying a leading ‘+’. See Section 2.6
[Disambiguating names and IDs], page 7.

1 However, some systems (e.g., FreeBSD) can be configured to allow certain regular users to use the chroot
system call, and hence to run this program. Also, on Cygwin, anyone can run the chroot command,
because the underlying function is non-privileged due to lack of support in MS-Windows. Furthermore,
the chroot command avoids the chroot system call when newroot is identical to the old / directory for
consistency with systems where this is allowed for non-privileged users.

Chapter 23: Modified command invocation 203

Here are a few tips to help avoid common problems in using chroot. To start with a
simple example, make command refer to a statically linked binary. If you were to use a
dynamically linked executable, then you’d have to arrange to have the shared libraries in
the right place under your new root directory.

For example, if you create a statically linked ls executable, and put it in /tmp/empty,
you can run this command as root:

$ chroot /tmp/empty /ls -Rl /

Then you’ll see output like this:

/:

total 1023

-rwxr-xr-x 1 0 0 1041745 Aug 16 11:17 ls

If you want to use a dynamically linked executable, say bash, then first run ‘ldd bash’ to
see what shared objects it needs. Then, in addition to copying the actual binary, also copy
the listed files to the required positions under your intended new root directory. Finally, if
the executable requires any other files (e.g., data, state, device files), copy them into place,
too.

chroot is installed only on systems that have the chroot function, so portable scripts
should not rely on its existence.

Exit status:

125 if chroot itself fails
126 if command is found but cannot be invoked
127 if command cannot be found
the exit status of command otherwise

23.2 env: Run a command in a modified environment

env runs a command with a modified environment. Synopses:

env [option]... [name=value]... [command [args]...]

env -[v]S’[option]... [name=value]... [command [args]...]’

env

env is commonly used on first line of scripts (shebang line):

#!/usr/bin/env command

#!/usr/bin/env -[v]S[option]... [name=value]... command [args]...

Operands of the form ‘variable=value’ set the environment variable variable to value
value. value may be empty (‘variable=’). Setting a variable to an empty value is different
from unsetting it. These operands are evaluated left-to-right, so if two operands mention
the same variable the earlier is ignored.

Environment variable names can be empty, and can contain any characters other than
‘=’ and ASCII NUL. However, it is wise to limit yourself to names that consist solely of
underscores, digits, and ASCII letters, and that begin with a non-digit, as applications like
the shell do not work well with other names.

The first operand that does not contain the character ‘=’ specifies the program to invoke;
it is searched for according to the PATH environment variable. Any remaining arguments

Chapter 23: Modified command invocation 204

are passed as arguments to that program. The program should not be a special built-in
utility (see Section 2.12 [Special built-in utilities], page 10).

Modifications to PATH take effect prior to searching for command. Use caution when
reducing PATH; behavior is not portable when PATH is undefined or omits key directories
such as /bin.

In the rare case that a utility contains a ‘=’ in the name, the only way to disambiguate
it from a variable assignment is to use an intermediate command for command, and pass
the problematic program name via args. For example, if ./prog= is an executable in the
current PATH:

env prog= true # runs ’true’, with prog= in environment

env ./prog= true # runs ’true’, with ./prog= in environment

env -- prog= true # runs ’true’, with prog= in environment

env sh -c ’\prog= true’ # runs ’prog=’ with argument ’true’

env sh -c ’exec "$@"’ sh prog= true # also runs ’prog=’

If no command name is specified following the environment specifications, the resulting
environment is printed. This is like specifying the printenv program.

For some examples, suppose the environment passed to env contains ‘LOGNAME=rms’,
‘EDITOR=emacs’, and ‘PATH=.:/gnubin:/hacks’:

• Output the current environment.

$ env | LC_ALL=C sort

EDITOR=emacs

LOGNAME=rms

PATH=.:/gnubin:/hacks

• Run foo with a reduced environment, preserving only the original PATH to avoid prob-
lems in locating foo.

env - PATH="$PATH" foo

• Run foo with the environment containing ‘LOGNAME=rms’, ‘EDITOR=emacs’, and
‘PATH=.:/gnubin:/hacks’, and guarantees that foo was found in the file system
rather than as a shell built-in.

env foo

• Run nemacs with the environment containing ‘LOGNAME=foo’, ‘EDITOR=emacs’,
‘PATH=.:/gnubin:/hacks’, and ‘DISPLAY=gnu:0’.

env DISPLAY=gnu:0 LOGNAME=foo nemacs

• Attempt to run the program /energy/-- (as that is the only possible path search
result); if the command exists, the environment will contain ‘LOGNAME=rms’ and
‘PATH=/energy’, and the arguments will be ‘e=mc2’, ‘bar’, and ‘baz’.

env -u EDITOR PATH=/energy -- e=mc2 bar baz

23.2.1 General options

The program accepts the following options. Also see Chapter 2 [Common options], page 2.
Options must precede operands.

Chapter 23: Modified command invocation 205

‘-0’
‘--null’ Output a zero byte (ASCII NUL) at the end of each line, rather than a newline.

This option enables other programs to parse the output even when that output
would contain data with embedded newlines.

‘-u name’
‘--unset=name’

Remove variable name from the environment, if it was in the environment.

‘-’
‘-i’
‘--ignore-environment’

Start with an empty environment, ignoring the inherited environment.

‘-C dir’
‘--chdir=dir’

Change the working directory to dir before invoking command. This differs
from the shell built-in cd in that it starts command as a subprocess rather than
altering the shell’s own working directory; this allows it to be chained with
other commands that run commands in a different context. For example:

Run ’true’ with /chroot as its root directory and /srv as its working

directory.

chroot /chroot env --chdir=/srv true

Run ’true’ with /build as its working directory, FOO=bar in its

environment, and a time limit of five seconds.

env --chdir=/build FOO=bar timeout 5 true

‘--default-signal[=sig]’
Unblock and reset signal sig to its default signal handler. Without sig all
known signals are unblocked and reset to their defaults. Multiple signals can
be comma-separated. The following command runs seq with SIGINT and SIG-
PIPE set to their default (which is to terminate the program):

env --default-signal=PIPE,INT seq 1000 | head -n1

In the following example, we see how this is not possible to do with traditional
shells. Here the first trap command sets SIGPIPE to ignore. The second trap
command ostensibly sets it back to its default, but POSIX mandates that the
shell must not change inherited state of the signal - so it is a no-op.

trap ’’ PIPE && sh -c ’trap - PIPE ; seq inf | head -n1’

Using --default-signal=PIPE we can ensure the signal handling is set to its
default behavior:

trap ’’ PIPE && sh -c ’env --default-signal=PIPE seq inf | head -n1’

‘--ignore-signal[=sig]’
Ignore signal sig when running a program. Without sig all known signals are set
to ignore. Multiple signals can be comma-separated. The following command
runs seq with SIGINT set to be ignored - pressing Ctrl-C will not terminate
it:

env --ignore-signal=INT seq inf > /dev/null

Chapter 23: Modified command invocation 206

‘SIGCHLD’ is special, in that --ignore-signal=CHLD might have no effect
(POSIX says it’s unspecified).

Most operating systems do not allow ignoring ‘SIGKILL’, ‘SIGSTOP’ (and possi-
bly other signals). Attempting to ignore these signals will fail.

Multiple (and contradictory) --default-signal=SIG and --ignore-signal=SIG
options are processed left-to-right, with the latter taking precedence. In the
following example, ‘SIGPIPE’ is set to default while ‘SIGINT’ is ignored:

env --default-signal=INT,PIPE --ignore-signal=INT

‘--block-signal[=sig]’
Block signal(s) sig from being delivered.

‘--list-signal-handling’
List blocked or ignored signals to stderr, before executing a command.

‘-v’
‘--debug’ Show verbose information for each processing step.

$ env -v -uTERM A=B uname -s

unset: TERM

setenv: A=B

executing: uname

arg[0]= ’uname’

arg[1]= ’-s’

Linux

When combined with -S it is recommended to list -v first, e.g. env

-vS’string’.

‘-S string’
‘--split-string=string’

process and split string into separate arguments used to pass multiple argu-
ments on shebang lines. env supports FreeBSD’s syntax of several escape se-
quences and environment variable expansions. See below for details and exam-
ples.

Exit status:

0 if no command is specified and the environment is output
125 if env itself fails
126 if command is found but cannot be invoked
127 if command cannot be found
the exit status of command otherwise

23.2.2 -S/--split-string usage in scripts

The -S/--split-string options enable using multiple arguments on the first one of scripts
(shebang line, ‘#!’).

When a script’s interpreter is in a known location, scripts typically contain the absolute
file name in their first line:

Shell script: #!/bin/sh

echo hello

Chapter 23: Modified command invocation 207

Perl script: #!/usr/bin/perl

print "hello\n";

Python script: #!/usr/bin/python3

print("hello")

When a script’s interpreter is in a non-standard location in the PATH environment vari-
able, it is recommended to use env on the first line of the script to find the executable and
run it:

Shell script: #!/usr/bin/env bash

echo hello

Perl script: #!/usr/bin/env perl

print "hello\n";

Python script: #!/usr/bin/env python3

print("hello")

Most operating systems (e.g. GNU/Linux, BSDs) treat all text after the first space as
a single argument. When using env in a script it is thus not possible to specify multiple
arguments.

In the following example:

#!/usr/bin/env perl -T -w

print "hello\n";

The operating system treats ‘perl -T -w’ as one argument (the program’s name), and
executing the script fails with:

/usr/bin/env: ’perl -T -w’: No such file or directory

The -S option instructs env to split the single string into multiple arguments. The
following example works as expected:

$ cat hello.pl

#!/usr/bin/env -S perl -T -w

print "hello\n";

$ chmod a+x hello.pl

$./hello.pl

hello

And is equivalent to running perl -T -w hello.pl on the command line prompt.

Testing and troubleshooting

To test env -S on the command line, use single quotes for the -S string to emulate a single
paramter. Single quotes are not needed when using env -S in a shebang line on the first
line of a script (the operating system already treats it as one argument).

The following command is equivalent to the hello.pl script above:

$ env -S’perl -T -w’ hello.pl

Chapter 23: Modified command invocation 208

To troubleshoot -S usage add the -v as the first argument (before -S).

Using -vS on a shebang line in a script:

$ cat hello-debug.pl

#!/usr/bin/env -vS perl -T -w

print "hello\n";

$ chmod a+x hello-debug.pl

$./hello-debug.pl

split -S: ’perl -T -w’

into: ’perl’

& ’-T’

& ’-w’

executing: perl

arg[0]= ’perl’

arg[1]= ’-T’

arg[2]= ’-w’

arg[3]= ’./hello-debug.pl’

hello

Using -vS on the command line prompt (adding single quotes):

$ env -vS’perl -T -w’ hello-debug.pl

split -S: ’perl -T -w’

into: ’perl’

& ’-T’

& ’-w’

executing: perl

arg[0]= ’perl’

arg[1]= ’-T’

arg[2]= ’-w’

arg[3]= ’hello-debug.pl’

hello

23.2.3 -S/--split-string syntax

Splitting arguments by whitespace

Running env -Sstring splits the string into arguments based on unquoted spaces or tab
characters.

In the following contrived example the awk variable ‘OFS’ will be <space>xyz<space>

as these spaces are inside double quotes. The other space characters are used as argument
separators:

$ cat one.awk

#!/usr/bin/env -S awk -v OFS=" xyz " -f

BEGIN {print 1,2,3}

$ chmod a+x one.awk

$./one.awk

Chapter 23: Modified command invocation 209

1 xyz 2 xyz 3

When using -S on the command line prompt, remember to add single quotes around the
entire string:

$ env -S’awk -v OFS=" xyz " -f’ one.awk

1 xyz 2 xyz 3

Escape sequences

env supports several escape sequences. These sequences are processed when unquoted or
inside double quotes (unless otherwise noted). Single quotes disable escape sequences except
‘\’’ and ‘\\’.

\c Ignore the remaining characters in the string. Cannot be used inside double
quotes.

\f form-feed character (ASCII 0x0C)

\n new-line character (ASCII 0x0A)

\r carriage-return character (ASCII 0x0D)

\t tab character (ASCII 0x09)

\v vertical tab character (ASCII 0x0B)

\# A hash ‘#’ character. Used when a ‘#’ character is needed as the first character
of an argument (see ’comments’ section below).

\$ A dollar-sign character ‘$’. Unescaped ‘$’ characters are used to expand envi-
ronment variables (see ’variables’ section below).

_ Inside double-quotes, replaced with a single space character. Outside quotes,
treated as an argument separator. ‘_’ can be used to avoid space characters in
a shebang line (see examples below).

\" A double-quote character.

\’ A single-quote character. This escape sequence works inside single-quoted
strings.

\\ A backslash character. This escape sequence works inside single-quoted strings.

The following awk script will use tab character as input and output field separator
(instead of spaces and tabs):

$ cat tabs.awk

#!/usr/bin/env -S awk -v FS="\t" -v OFS="\t" -f

...

Chapter 23: Modified command invocation 210

Comments

The escape sequence ‘\c’ (used outside single/double quotes) causes env to ignore the rest
of the string.

The ‘#’ character causes env to ignore the rest of the string when it appears as the first
character of an argument. Use ‘\#’ to reverse this behavior.

$ env -S’printf %s\n A B C’

A

B

C

$ env -S’printf %s\n A# B C’

A#

B

C

$ env -S’printf %s\n A #B C’

A

$ env -S’printf %s\n A \#B C’

A

#B

C

$ env -S’printf %s\n A\cB C’

A

NOTE: The above examples use single quotes as they are executed on the command-line.

Environment variable expansion

The pattern ‘${VARNAME}’ is used to substitute a value from the environment variable. The
pattern must include the curly braces (‘{’,‘}’). Without them env will reject the string.
Special shell variables (such as ‘$@’, ‘$*’, ‘$$’) are not supported.

If the environment variable is empty or not set, the pattern will be replaced by an empty
string. The value of ‘${VARNAME}’ will be that of the executed env, before any modifications
using -i/--ignore-environment/-u/--unset or setting new values using ‘VAR=VALUE’.

The following python script prepends /opt/custom/modules to the python module
search path environment variable (‘PYTHONPATH’):

$ cat custom.py

#!/usr/bin/env -S PYTHONPATH=/opt/custom/modules/:${PYTHONPATH} python

print "hello"

...

The expansion of ‘${PYTHONPATH}’ is performed by env, not by a shell. If the curly
braces are omitted, env will fail:

$ cat custom.py

#!/usr/bin/env -S PYTHONPATH=/opt/custom/modules/:$PYTHONPATH python

print "hello"

Chapter 23: Modified command invocation 211

...

$ chmod a+x custom.py

$ custom.py

/usr/bin/env: only ${VARNAME} expansion is supported, error at: $PYTHONPATH python

Environment variable expansion happens before clearing the environment (with -i) or
unsetting specific variables (with -u):

$ env -S’-i OLDUSER=${USER} env’

OLDUSER=gordon

Use -v to diagnose the operations step-by-step:

$ env -vS’-i OLDUSER=${USER} env’

expanding ${USER} into ’gordon’

split -S: ’-i OLDUSER=${USER} env’

into: ’-i’

& ’OLDUSER=gordon’

& ’env’

cleaning environ

setenv: OLDUSER=gordon

executing: env

arg[0]= ’env’

OLDUSER=gordon

23.3 nice: Run a command with modified niceness

nice prints a process’s niceness, or runs a command with modified niceness. niceness affects
how favorably the process is scheduled in the system. Synopsis:

nice [option]... [command [arg]...]

If no arguments are given, nice prints the current niceness. Otherwise, nice runs the
given command with its niceness adjusted. By default, its niceness is incremented by 10.

Niceness values range at least from −20 (process has high priority and gets more re-
sources, thus slowing down other processes) through 19 (process has lower priority and runs
slowly itself, but has less impact on the speed of other running processes). Some systems
may have a wider range of niceness values; conversely, other systems may enforce more
restrictive limits. An attempt to set the niceness outside the supported range is treated as
an attempt to use the minimum or maximum supported value.

A niceness should not be confused with a scheduling priority, which lets applications
determine the order in which threads are scheduled to run. Unlike a priority, a niceness is
merely advice to the scheduler, which the scheduler is free to ignore. Also, as a point of
terminology, POSIX defines the behavior of nice in terms of a nice value, which is the non-
negative difference between a niceness and the minimum niceness. Though nice conforms
to POSIX, its documentation and diagnostics use the term “niceness” for compatibility with
historical practice.

command must not be a special built-in utility (see Section 2.12 [Special built-in utilities],
page 10).

Chapter 23: Modified command invocation 212

Due to shell aliases and built-in nice functions, using an unadorned nice interactively
or in a script may get you different functionality than that described here. Invoke it via
env (i.e., env nice ...) to avoid interference from the shell.

Note to change the niceness of an existing process, one needs to use the renice command.

The program accepts the following option. Also see Chapter 2 [Common options], page 2.
Options must precede operands.

‘-n adjustment’
‘--adjustment=adjustment’

Add adjustment instead of 10 to the command’s niceness. If adjustment is neg-
ative and you lack appropriate privileges, nice issues a warning but otherwise
acts as if you specified a zero adjustment.

For compatibility nice also supports an obsolete option syntax -adjustment.
New scripts should use -n adjustment instead.

nice is installed only on systems that have the POSIX setpriority function, so portable
scripts should not rely on its existence on non-POSIX platforms.

Exit status:

0 if no command is specified and the niceness is output
125 if nice itself fails
126 if command is found but cannot be invoked
127 if command cannot be found
the exit status of command otherwise

It is sometimes useful to run a non-interactive program with reduced niceness.

$ nice factor 4611686018427387903

Since nice prints the current niceness, you can invoke it through itself to demonstrate
how it works.

The default behavior is to increase the niceness by ‘10’:

$ nice

0

$ nice nice

10

$ nice -n 10 nice

10

The adjustment is relative to the current niceness. In the next example, the first nice
invocation runs the second one with niceness 10, and it in turn runs the final one with a
niceness that is 3 more:

$ nice nice -n 3 nice

13

Specifying a niceness larger than the supported range is the same as specifying the
maximum supported value:

$ nice -n 10000000000 nice

19

Only a privileged user may run a process with lower niceness:

$ nice -n -1 nice

Chapter 23: Modified command invocation 213

nice: cannot set niceness: Permission denied

0

$ sudo nice -n -1 nice

-1

23.4 nohup: Run a command immune to hangups

nohup runs the given command with hangup signals ignored, so that the command can
continue running in the background after you log out. Synopsis:

nohup command [arg]...

If standard input is a terminal, redirect it so that terminal sessions do not mistakenly
consider the terminal to be used by the command. Make the substitute file descriptor
unreadable, so that commands that mistakenly attempt to read from standard input can
report an error. This redirection is a GNU extension; programs intended to be portable to
non-GNU hosts can use ‘nohup command [arg]... 0>/dev/null’ instead.

If standard output is a terminal, the command’s standard output is appended to the file
nohup.out; if that cannot be written to, it is appended to the file $HOME/nohup.out; and if
that cannot be written to, the command is not run. Any nohup.out or $HOME/nohup.out
file created by nohup is made readable and writable only to the user, regardless of the
current umask settings.

If standard error is a terminal, it is normally redirected to the same file descriptor as
the (possibly-redirected) standard output. However, if standard output is closed, standard
error terminal output is instead appended to the file nohup.out or $HOME/nohup.out as
above.

To capture the command’s output to a file other than nohup.out you can redirect it.
For example, to capture the output of make:

nohup make > make.log

nohup does not automatically put the command it runs in the background; you must
do that explicitly, by ending the command line with an ‘&’. Also, nohup does not alter the
niceness of command; use nice for that, e.g., ‘nohup nice command’.

command must not be a special built-in utility (see Section 2.12 [Special built-in utilities],
page 10).

The only options are --help and --version. See Chapter 2 [Common options], page 2.
Options must precede operands.

Exit status:

125 if nohup itself fails, and POSIXLY_CORRECT is not set
126 if command is found but cannot be invoked
127 if command cannot be found
the exit status of command otherwise

If POSIXLY_CORRECT is set, internal failures give status 127 instead of 125.

Chapter 23: Modified command invocation 214

23.5 stdbuf: Run a command with modified I/O stream
buffering

stdbuf allows one to modify the buffering operations of the three standard I/O streams
associated with a program. Synopsis:

stdbuf option... command

command must start with the name of a program that

1. uses the ISO C FILE streams for input/output (note the programs dd and cat don’t
do that),

2. does not adjust the buffering of its standard streams (note the program tee is not in
this category).

Any additional args are passed as additional arguments to the command.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2.

‘-i mode’
‘--input=mode’

Adjust the standard input stream buffering.

‘-o mode’
‘--output=mode’

Adjust the standard output stream buffering.

‘-e mode’
‘--error=mode’

Adjust the standard error stream buffering.

The mode can be specified as follows:

‘L’ Set the stream to line buffered mode. In this mode data is coalesced until
a newline is output or input is read from any stream attached to a terminal
device. This option is invalid with standard input.

‘0’ Disable buffering of the selected stream. In this mode, data is output im-
mediately and only the amount of data requested is read from input. Note
the difference in function for input and output. Disabling buffering for input
will not influence the responsiveness or blocking behavior of the stream input
functions. For example fread will still block until EOF or error, even if the
underlying read returns less data than requested.

‘size’ Specify the size of the buffer to use in fully buffered mode. size may be, or may
be an integer optionally followed by, one of the following multiplicative suffixes:

‘KB’ => 1000 (KiloBytes)

‘K’ => 1024 (KibiBytes)

‘MB’ => 1000*1000 (MegaBytes)

‘M’ => 1024*1024 (MebiBytes)

‘GB’ => 1000*1000*1000 (GigaBytes)

‘G’ => 1024*1024*1024 (GibiBytes)

and so on for ‘T’, ‘P’, ‘E’, ‘Z’, and ‘Y’. Binary prefixes can be used, too: ‘KiB’=‘K’,
‘MiB’=‘M’, and so on.

Chapter 23: Modified command invocation 215

stdbuf is installed only on platforms that use the Executable and Linkable Format
(ELF) and support the constructor attribute, so portable scripts should not rely on its
existence.

Exit status:

125 if stdbuf itself fails
126 if command is found but cannot be invoked
127 if command cannot be found
the exit status of command otherwise

23.6 timeout: Run a command with a time limit

timeout runs the given command and kills it if it is still running after the specified time
interval. Synopsis:

timeout [option] duration command [arg]...

command must not be a special built-in utility (see Section 2.12 [Special built-in utilities],
page 10).

The program accepts the following options. Also see Chapter 2 [Common options],
page 2. Options must precede operands.

‘--preserve-status’
Return the exit status of the managed command on timeout, rather than a
specific exit status indicating a timeout. This is useful if the managed command
supports running for an indeterminate amount of time.

‘--foreground’
Don’t create a separate background program group, so that the managed com-
mand can use the foreground TTY normally. This is needed to support timing
out commands not started directly from an interactive shell, in two situations.

1. command is interactive and needs to read from the terminal for example

2. the user wants to support sending signals directly to command from the
terminal (like Ctrl-C for example)

Note in this mode of operation, any children of command will not be timed out.
Also SIGCONT will not be sent to command, as it’s generally not needed with
foreground processes, and can cause intermittent signal delivery issues with
programs that are monitors themselves (like GDB for example).

‘-k duration’
‘--kill-after=duration’

Ensure the monitored command is killed by also sending a ‘KILL’ signal, after
the specified duration. Without this option, if the selected signal proves not to
be fatal, timeout does not kill the command.

‘-s signal’
‘--signal=signal’

Send this signal to command on timeout, rather than the default ‘TERM’ sig-
nal. signal may be a name like ‘HUP’ or a number. See Section 2.5 [Signal
specifications], page 6.

Chapter 23: Modified command invocation 216

‘-v’
‘--verbose’

Diagnose to stderr, any signal sent upon timeout.

duration is a floating point number in either the current or the C locale (see Section 2.4
[Floating point], page 5) followed by an optional unit:

‘s’ for seconds (the default)
‘m’ for minutes
‘h’ for hours
‘d’ for days

A duration of 0 disables the associated timeout. Note that the actual timeout duration
is dependent on system conditions, which should be especially considered when specifying
sub-second timeouts.

Exit status:

124 if command times out
125 if timeout itself fails
126 if command is found but cannot be invoked
127 if command cannot be found
137 if command is sent the KILL(9) signal (128+9)
the exit status of command otherwise

217

24 Process control

24.1 kill: Send a signal to processes

The kill command sends a signal to processes, causing them to terminate or otherwise
act upon receiving the signal in some way. Alternatively, it lists information about signals.
Synopses:

kill [-s signal | --signal signal | -signal] pid...

kill [-l | --list | -t | --table] [signal]...

Due to shell aliases and built-in kill functions, using an unadorned kill interactively
or in a script may get you different functionality than that described here. Invoke it via
env (i.e., env kill ...) to avoid interference from the shell.

The first form of the kill command sends a signal to all pid arguments. The default
signal to send if none is specified is ‘TERM’. The special signal number ‘0’ does not denote a
valid signal, but can be used to test whether the pid arguments specify processes to which
a signal could be sent.

If pid is positive, the signal is sent to the process with the process ID pid. If pid is zero,
the signal is sent to all processes in the process group of the current process. If pid is −1,
the signal is sent to all processes for which the user has permission to send a signal. If pid is
less than −1, the signal is sent to all processes in the process group that equals the absolute
value of pid.

If pid is not positive, a system-dependent set of system processes is excluded from the
list of processes to which the signal is sent.

If a negative pid argument is desired as the first one, it should be preceded by --.
However, as a common extension to POSIX, -- is not required with ‘kill -signal -pid’.
The following commands are equivalent:

kill -15 -1

kill -TERM -1

kill -s TERM -- -1

kill -- -1

The first form of the kill command succeeds if every pid argument specifies at least
one process that the signal was sent to.

The second form of the kill command lists signal information. Either the -l or --list
option, or the -t or --table option must be specified. Without any signal argument, all
supported signals are listed. The output of -l or --list is a list of the signal names, one
per line; if signal is already a name, the signal number is printed instead. The output of
-t or --table is a table of signal numbers, names, and descriptions. This form of the kill
command succeeds if all signal arguments are valid and if there is no output error.

The kill command also supports the --help and --version options. See Chapter 2
[Common options], page 2.

A signal may be a signal name like ‘HUP’, or a signal number like ‘1’, or an exit status
of a process terminated by the signal. A signal name can be given in canonical form or
prefixed by ‘SIG’. The case of the letters is ignored, except for the -signal option which
must use upper case to avoid ambiguity with lower case option letters. See Section 2.5
[Signal specifications], page 6, for a list of supported signal names and numbers.

218

25 Delaying

25.1 sleep: Delay for a specified time

sleep pauses for an amount of time specified by the sum of the values of the command line
arguments. Synopsis:

sleep number[smhd]...

Each argument is a non-negative number followed by an optional unit; the default is
seconds. The units are:

‘s’ seconds

‘m’ minutes

‘h’ hours

‘d’ days

Although portable POSIX scripts must give sleep a single non-negative integer argu-
ment without a suffix, GNU sleep also accepts two or more arguments, unit suffixes, and
floating-point numbers in either the current or the C locale. See Section 2.4 [Floating point],
page 5.

For instance, the following could be used to sleep for 1 second, 234 milli-, 567 micro-
and 890 nanoseconds:

sleep 1234e-3 567.89e-6

The only options are --help and --version. See Chapter 2 [Common options], page 2.

Due to shell aliases and built-in sleep functions, using an unadorned sleep interactively
or in a script may get you different functionality than that described here. Invoke it via
env (i.e., env sleep ...) to avoid interference from the shell.

An exit status of zero indicates success, and a nonzero value indicates failure.

219

26 Numeric operations

These programs do numerically-related operations.

26.1 factor: Print prime factors

factor prints prime factors. Synopses:

factor [number]...

factor option

If no number is specified on the command line, factor reads numbers from standard
input, delimited by newlines, tabs, or spaces.

The factor command supports only a small number of options:

‘--help’ Print a short help on standard output, then exit without further processing.

‘--version’
Print the program version on standard output, then exit without further pro-
cessing.

Factoring the product of the eighth and ninth Mersenne primes takes about 30 millisec-
onds of CPU time on a 2.2 GHz Athlon.

M8=$(echo 2^31-1|bc)

M9=$(echo 2^61-1|bc)

n=$(echo "$M8 * $M9" | bc)

/usr/bin/time -f %U factor $n

4951760154835678088235319297: 2147483647 2305843009213693951

0.03

Similarly, factoring the eighth Fermat number 2256 + 1 takes about 20 seconds on the
same machine.

Factoring large numbers is, in general, hard. The Pollard-Brent rho algorithm used by
factor is particularly effective for numbers with relatively small factors. If you wish to
factor large numbers which do not have small factors (for example, numbers which are the
product of two large primes), other methods are far better.

If factor is built without using GNU MP, only single-precision arithmetic is available,
and so large numbers (typically 2128 and above) will not be supported. The single-precision
code uses an algorithm which is designed for factoring smaller numbers.

An exit status of zero indicates success, and a nonzero value indicates failure.

26.2 numfmt: Reformat numbers

numfmt reads numbers in various representations and reformats them as requested. The
most common usage is converting numbers to/from human representation (e.g. ‘4G’ 7→
‘4,000,000,000’).

numfmt [option]... [number]

numfmt converts each number on the command-line according to the specified options
(see below). If no numbers are given, it reads numbers from standard input. numfmt can

Chapter 26: Numeric operations 220

optionally extract numbers from specific columns, maintaining proper line padding and
alignment.

An exit status of zero indicates success, and a nonzero value indicates failure.See
--invalid for additional information regarding exit status.

26.2.1 General options

The program accepts the following options. Also see Chapter 2 [Common options], page 2.

‘--debug’ Print (to standard error) warning messages about possible erroneous usage.

‘-d d’
‘--delimiter=d’

Use the character d as input field separator (default: whitespace). Note: Using
non-default delimiter turns off automatic padding.

‘--field=fields’
Convert the number in input field fields (default: 1). fields supports cut style
field ranges:

N N’th field, counted from 1

N- from N’th field, to end of line

N-M from N’th to M’th field (inclusive)

-M from first to M’th field (inclusive)

- all fields

‘--format=format’
Use printf-style floating FORMAT string. The format string must contain one
‘%f’ directive, optionally with ‘’’, ‘-’, ‘0’, width or precision modifiers. The
‘’’ modifier will enable --grouping, the ‘-’ modifier will enable left-aligned
--padding and the width modifier will enable right-aligned --padding. The
‘0’ width modifier (without the ‘-’ modifier) will generate leading zeros on
the number, up to the specified width. A precision specification like ‘%.1f’ will
override the precision determined from the input data or set due to --to option
auto scaling.

‘--from=unit’
Auto-scales input numbers according to unit. See UNITS below. The default
is no scaling, meaning suffixes (e.g. ‘M’, ‘G’) will trigger an error.

‘--from-unit=n’
Specify the input unit size (instead of the default 1). Use this option when the
input numbers represent other units (e.g. if the input number ‘10’ represents
10 units of 512 bytes, use ‘--from-unit=512’). Suffixes are handled as with
‘--from=auto’.

‘--grouping’
Group digits in output numbers according to the current locale’s grouping rules
(e.g Thousands Separator character, commonly ‘.’ (dot) or ‘,’ comma). This
option has no effect in ‘POSIX/C’ locale.

‘--header[=n]’
Print the first n (default: 1) lines without any conversion.

Chapter 26: Numeric operations 221

‘--invalid=mode’
The default action on input errors is to exit immediately with status code 2.
--invalid=‘abort’ explicitly specifies this default mode. With a mode of
‘fail’, print a warning for each conversion error, and exit with status 2. With
a mode of ‘warn’, exit with status 0, even in the presence of conversion errors,
and with a mode of ‘ignore’ do not even print diagnostics.

‘--padding=n’
Pad the output numbers to n characters, by adding spaces. If n is a positive
number, numbers will be right-aligned. If n is a negative number, numbers will
be left-aligned. By default, numbers are automatically aligned based on the
input line’s width (only with the default delimiter).

‘--round=method’
When converting number representations, round the number according to
method, which can be ‘up’, ‘down’, ‘from-zero’ (the default), ‘towards-zero’,
‘nearest’.

‘--suffix=suffix’
Add ‘SUFFIX’ to the output numbers, and accept optional ‘SUFFIX’ in input
numbers.

‘--to=unit’
Auto-scales output numbers according to unit. See Units below. The default
is no scaling, meaning all the digits of the number are printed.

‘--to-unit=n’
Specify the output unit size (instead of the default 1). Use this option when the
output numbers represent other units (e.g. to represent ‘4,000,000’ bytes in
blocks of 1KB, use ‘--to=si --to-unit=1000’). Suffixes are handled as with
‘--from=auto’.

‘-z’
‘--zero-terminated’

Delimit items with a zero byte rather than a newline (ASCII LF). I.e., treat
input as items separated by ASCII NUL and terminate output items with ASCII
NUL. This option can be useful in conjunction with ‘perl -0’ or ‘find -print0’
and ‘xargs -0’ which do the same in order to reliably handle arbitrary file
names (even those containing blanks or other special characters).Note with -z

the newline character is treated as a field separator.

26.2.2 Possible units:

The following are the possible unit options with --from=UNITS and --to=UNITS:

none No scaling is performed. For input numbers, no suffixes are accepted, and
any trailing characters following the number will trigger an error. For output
numbers, all digits of the numbers will be printed.

si Auto-scale numbers according to the International System of Units (SI) stan-
dard. For input numbers, accept one of the following suffixes. For output

Chapter 26: Numeric operations 222

numbers, values larger than 1000 will be rounded, and printed with one of the
following suffixes:

‘K’ => 10001 = 103 (Kilo)

‘M’ => 10002 = 106 (Mega)

‘G’ => 10003 = 109 (Giga)

‘T’ => 10004 = 1012 (Tera)

‘P’ => 10005 = 1015 (Peta)

‘E’ => 10006 = 1018 (Exa)

‘Z’ => 10007 = 1021 (Zetta)

‘Y’ => 10008 = 1024 (Yotta)

iec Auto-scale numbers according to the International Electrotechnical Commission
(IEC) standard. For input numbers, accept one of the following suffixes. For
output numbers, values larger than 1024 will be rounded, and printed with one
of the following suffixes:

‘K’ => 10241 = 210 (Kibi)

‘M’ => 10242 = 220 (Mebi)

‘G’ => 10243 = 230 (Gibi)

‘T’ => 10244 = 240 (Tebi)

‘P’ => 10245 = 250 (Pebi)

‘E’ => 10246 = 260 (Exbi)

‘Z’ => 10247 = 270 (Zebi)

‘Y’ => 10248 = 280 (Yobi)

The iec option uses a single letter suffix (e.g. ‘G’), which is not fully standard,
as the iec standard recommends a two-letter symbol (e.g ‘Gi’) - but in practice,
this method common. Compare with the iec-i option.

iec-i Auto-scale numbers according to the International Electrotechnical Commission
(IEC) standard. For input numbers, accept one of the following suffixes. For
output numbers, values larger than 1024 will be rounded, and printed with one
of the following suffixes:

‘Ki’ => 10241 = 210 (Kibi)

‘Mi’ => 10242 = 220 (Mebi)

‘Gi’ => 10243 = 230 (Gibi)

‘Ti’ => 10244 = 240 (Tebi)

‘Pi’ => 10245 = 250 (Pebi)

‘Ei’ => 10246 = 260 (Exbi)

‘Zi’ => 10247 = 270 (Zebi)

‘Yi’ => 10248 = 280 (Yobi)

The iec-i option uses a two-letter suffix symbol (e.g. ‘Gi’), as the iec standard
recommends, but this is not always common in practice. Compare with the iec
option.

auto ‘auto’ can only be used with --from. With this method, numbers with
‘K’,‘M’,‘G’,‘T’,‘P’,‘E’,‘Z’,‘Y’ suffixes are interpreted as SI values, and numbers
with ‘Ki’, ‘Mi’,‘Gi’,‘Ti’,‘Pi’,‘Ei’,‘Zi’,‘Yi’ suffixes are interpreted as IEC values.

Chapter 26: Numeric operations 223

26.2.3 Examples of using numfmt

Converting a single number from/to human representation:

$ numfmt --to=si 500000

500K

$ numfmt --to=iec 500000

489K

$ numfmt --to=iec-i 500000

489Ki

$ numfmt --from=si 1M

1000000

$ numfmt --from=iec 1M

1048576

with ’--from=auto’, M=Mega, Mi=Mebi

$ numfmt --from=auto 1M

1000000

$ numfmt --from=auto 1Mi

1048576

Converting from ‘SI’ to ‘IEC’ scales (e.g. when a harddisk capacity is advertised as ‘1TB’,
while checking the drive’s capacity gives lower values):

$ numfmt --from=si --to=iec 1T

932G

Converting a single field from an input file / piped input (these contrived examples are
for demonstration purposes only, as both ls and df support the --human-readable option
to output sizes in human-readable format):

Third field (file size) will be shown in SI representation

$ ls -log | numfmt --field 3 --header --to=si | head -n4

-rw-r--r-- 1 94K Aug 23 2011 ABOUT-NLS

-rw-r--r-- 1 3.7K Jan 7 16:15 AUTHORS

-rw-r--r-- 1 36K Jun 1 2011 COPYING

-rw-r--r-- 1 0 Jan 7 15:15 ChangeLog

Second field (size) will be shown in IEC representation

$ df --block-size=1 | numfmt --field 2 --header --to=iec | head -n4

File system 1B-blocks Used Available Use% Mounted on

rootfs 132G 104741408 26554036 80% /

tmpfs 794M 7580 804960 1% /run/shm

/dev/sdb1 694G 651424756 46074696 94% /home

Output can be tweaked using --padding or --format:

Pad to 10 characters, right-aligned

$ du -s * | numfmt --to=si --padding=10

Chapter 26: Numeric operations 224

2.5K config.log

108 config.status

1.7K configure

20 configure.ac

Pad to 10 characters, left-aligned

$ du -s * | numfmt --to=si --padding=-10

2.5K config.log

108 config.status

1.7K configure

20 configure.ac

Pad to 10 characters, left-aligned, using ’format’

$ du -s * | numfmt --to=si --format="%10f"

2.5K config.log

108 config.status

1.7K configure

20 configure.ac

Pad to 10 characters, left-aligned, using ’format’

$ du -s * | numfmt --to=si --padding="%-10f"

2.5K config.log

108 config.status

1.7K configure

20 configure.ac

With locales that support grouping digits, using --grouping or --format enables group-
ing. In ‘POSIX’ locale, grouping is silently ignored:

$ LC_ALL=C numfmt --from=iec --grouping 2G

2147483648

$ LC_ALL=en_US.utf8 numfmt --from=iec --grouping 2G

2,147,483,648

$ LC_ALL=ta_IN numfmt --from=iec --grouping 2G

2,14,74,83,648

$ LC_ALL=C ./src/numfmt --from=iec --format="==%’15f==" 2G

== 2147483648==

$ LC_ALL=en_US.utf8 ./src/numfmt --from=iec --format="==%’15f==" 2G

== 2,147,483,648==

$ LC_ALL=en_US.utf8 ./src/numfmt --from=iec --format="==%’-15f==" 2G

==2,147,483,648 ==

$ LC_ALL=ta_IN ./src/numfmt --from=iec --format="==%’15f==" 2G

Chapter 26: Numeric operations 225

== 2,14,74,83,648==

26.3 seq: Print numeric sequences

seq prints a sequence of numbers to standard output. Synopses:

seq [option]... last

seq [option]... first last

seq [option]... first increment last

seq prints the numbers from first to last by increment. By default, each number is
printed on a separate line. When increment is not specified, it defaults to ‘1’, even when
first is larger than last. first also defaults to ‘1’. So seq 1 prints ‘1’, but seq 0 and seq

10 5 produce no output. The sequence of numbers ends when the sum of the current
number and increment would become greater than last, so seq 1 10 10 only produces ‘1’.
increment must not be ‘0’; use the tool yes to get repeated output of a constant number.
first, increment and last must not be NaN. Floating-point numbers may be specified in
either the current or the C locale. See Section 2.4 [Floating point], page 5.

The program accepts the following options. Also see Chapter 2 [Common options],
page 2. Options must precede operands.

‘-f format’
‘--format=format’

Print all numbers using format. format must contain exactly one of the
‘printf’-style floating point conversion specifications ‘%a’, ‘%e’, ‘%f’, ‘%g’, ‘%A’,
‘%E’, ‘%F’, ‘%G’. The ‘%’ may be followed by zero or more flags taken from the
set ‘-+#0 ’’, then an optional width containing one or more digits, then an
optional precision consisting of a ‘.’ followed by zero or more digits. format
may also contain any number of ‘%%’ conversion specifications. All conversion
specifications have the same meaning as with ‘printf’.

The default format is derived from first, step, and last. If these all use a
fixed point decimal representation, the default format is ‘%.pf’, where p is the
minimum precision that can represent the output numbers exactly. Otherwise,
the default format is ‘%g’.

‘-s string’
‘--separator=string’

Separate numbers with string ; default is a newline. The output always termi-
nates with a newline.

‘-w’
‘--equal-width’

Print all numbers with the same width, by padding with leading zeros. first,
step, and last should all use a fixed point decimal representation. (To have
other kinds of padding, use --format).

You can get finer-grained control over output with -f:

$ seq -f ’(%9.2E)’ -9e5 1.1e6 1.3e6

(-9.00E+05)

(2.00E+05)

Chapter 26: Numeric operations 226

(1.30E+06)

If you want hexadecimal integer output, you can use printf to perform the conversion:

$ printf ’%x\n’ $(seq 1048575 1024 1050623)

fffff

1003ff

1007ff

For very long lists of numbers, use xargs to avoid system limitations on the length of an
argument list:

$ seq 1000000 | xargs printf ’%x\n’ | tail -n 3

f423e

f423f

f4240

To generate octal output, use the printf %o format instead of %x.

On most systems, seq can produce whole-number output for values up to at least 253.
Larger integers are approximated. The details differ depending on your floating-point im-
plementation. See Section 2.4 [Floating point], page 5. A common case is that seq works
with integers through 264, and larger integers may not be numerically correct:

$ seq 50000000000000000000 2 50000000000000000004

50000000000000000000

50000000000000000000

50000000000000000004

However, note that when limited to non-negative whole numbers, an increment of 1 and
no format-specifying option, seq can print arbitrarily large numbers.

Be careful when using seq with outlandish values: otherwise you may see surprising
results, as seq uses floating point internally. For example, on the x86 platform, where the
internal representation uses a 64-bit fraction, the command:

seq 1 0.0000000000000000001 1.0000000000000000009

outputs 1.0000000000000000007 twice and skips 1.0000000000000000008.

An exit status of zero indicates success, and a nonzero value indicates failure.

227

27 File permissions

Each file has a set of file mode bits that control the kinds of access that users have to that
file. They can be represented either in symbolic form or as an octal number.

27.1 Structure of File Mode Bits

The file mode bits have two parts: the file permission bits, which control ordinary access
to the file, and special mode bits, which affect only some files.

There are three kinds of permissions that a user can have for a file:

1. permission to read the file. For directories, this means permission to list the contents
of the directory.

2. permission to write to (change) the file. For directories, this means permission to create
and remove files in the directory.

3. permission to execute the file (run it as a program). For directories, this means per-
mission to access files in the directory.

There are three categories of users who may have different permissions to perform any
of the above operations on a file:

1. the file’s owner;

2. other users who are in the file’s group;

3. everyone else.

Files are given an owner and group when they are created. Usually the owner is the
current user and the group is the group of the directory the file is in, but this varies with
the operating system, the file system the file is created on, and the way the file is created.
You can change the owner and group of a file by using the chown and chgrp commands.

In addition to the three sets of three permissions listed above, the file mode bits have
three special components, which affect only executable files (programs) and, on most sys-
tems, directories:

The set-user-ID bit (setuid bit).
On execution, set the process’s effective user ID to that of the file. For di-
rectories on a few systems, give files created in the directory the same owner
as the directory, no matter who creates them, and set the set-user-ID bit of
newly-created subdirectories.

The set-group-ID bit (setgid bit).
On execution, set the process’s effective group ID to that of the file. For direc-
tories on most systems, give files created in the directory the same group as the
directory, no matter what group the user who creates them is in, and set the
set-group-ID bit of newly-created subdirectories.

The restricted deletion flag or sticky bit.
Prevent unprivileged users from removing or renaming a file in a directory unless
they own the file or the directory; this is commonly found on world-writable
directories like /tmp. For regular files on some older systems, save the program’s
text image on the swap device so it will load more quickly when run, so that
the image is “sticky”.

Chapter 27: File permissions 228

In addition to the file mode bits listed above, there may be file attributes specific to the
file system, e.g., access control lists (ACLs), whether a file is compressed, whether a file can
be modified (immutability), and whether a file can be dumped. These are usually set using
programs specific to the file system. For example:

ext2 On GNU and GNU/Linux the file attributes specific to the ext2 file system are
set using chattr.

FFS On FreeBSD the file flags specific to the FFS file system are set using chflags.

Even if a file’s mode bits allow an operation on that file, that operation may still fail,
because:

• the file-system-specific attributes or flags do not permit it; or

• the file system is mounted as read-only.

For example, if the immutable attribute is set on a file, it cannot be modified, regardless
of the fact that you may have just run chmod a+w FILE.

27.2 Symbolic Modes

Symbolic modes represent changes to files’ mode bits as operations on single-character
symbols. They allow you to modify either all or selected parts of files’ mode bits, optionally
based on their previous values, and perhaps on the current umask as well (see Section 27.2.6
[Umask and Protection], page 231).

The format of symbolic modes is:

[ugoa...][-+=]perms...[,...]

where perms is either zero or more letters from the set ‘rwxXst’, or a single letter from the
set ‘ugo’.

The following sections describe the operators and other details of symbolic modes.

27.2.1 Setting Permissions

The basic symbolic operations on a file’s permissions are adding, removing, and setting the
permission that certain users have to read, write, and execute or search the file. These
operations have the following format:

users operation permissions

The spaces between the three parts above are shown for readability only; symbolic modes
cannot contain spaces.

The users part tells which users’ access to the file is changed. It consists of one or more
of the following letters (or it can be empty; see Section 27.2.6 [Umask and Protection],
page 231, for a description of what happens then). When more than one of these letters is
given, the order that they are in does not matter.

u the user who owns the file;

g other users who are in the file’s group;

o all other users;

a all users; the same as ‘ugo’.

Chapter 27: File permissions 229

The operation part tells how to change the affected users’ access to the file, and is one
of the following symbols:

+ to add the permissions to whatever permissions the users already have for the
file;

- to remove the permissions from whatever permissions the users already have
for the file;

= to make the permissions the only permissions that the users have for the file.

The permissions part tells what kind of access to the file should be changed; it is normally
zero or more of the following letters. As with the users part, the order does not matter
when more than one letter is given. Omitting the permissions part is useful only with the
‘=’ operation, where it gives the specified users no access at all to the file.

r the permission the users have to read the file;

w the permission the users have to write to the file;

x the permission the users have to execute the file, or search it if it is a directory.

For example, to give everyone permission to read and write a regular file, but not to
execute it, use:

a=rw

To remove write permission for all users other than the file’s owner, use:

go-w

The above command does not affect the access that the owner of the file has to it, nor does
it affect whether other users can read or execute the file.

To give everyone except a file’s owner no permission to do anything with that file, use
the mode below. Other users could still remove the file, if they have write permission on
the directory it is in.

go=

Another way to specify the same thing is:

og-rwx

27.2.2 Copying Existing Permissions

You can base a file’s permissions on its existing permissions. To do this, instead of using
a series of ‘r’, ‘w’, or ‘x’ letters after the operator, you use the letter ‘u’, ‘g’, or ‘o’. For
example, the mode

o+g

adds the permissions for users who are in a file’s group to the permissions that other
users have for the file. Thus, if the file started out as mode 664 (‘rw-rw-r--’), the above
mode would change it to mode 666 (‘rw-rw-rw-’). If the file had started out as mode 741
(‘rwxr----x’), the above mode would change it to mode 745 (‘rwxr--r-x’). The ‘-’ and
‘=’ operations work analogously.

Chapter 27: File permissions 230

27.2.3 Changing Special Mode Bits

In addition to changing a file’s read, write, and execute/search permissions, you can change
its special mode bits. See Section 27.1 [Mode Structure], page 227, for a summary of these
special mode bits.

To change the file mode bits to set the user ID on execution, use ‘u’ in the users part of
the symbolic mode and ‘s’ in the permissions part.

To change the file mode bits to set the group ID on execution, use ‘g’ in the users part
of the symbolic mode and ‘s’ in the permissions part.

To set both user and group ID on execution, omit the users part of the symbolic mode
(or use ‘a’) and use ‘s’ in the permissions part.

To change the file mode bits to set the restricted deletion flag or sticky bit, omit the
users part of the symbolic mode (or use ‘a’) and use ‘t’ in the permissions part.

For example, to set the set-user-ID mode bit of a program, you can use the mode:

u+s

To remove both set-user-ID and set-group-ID mode bits from it, you can use the mode:

a-s

To set the restricted deletion flag or sticky bit, you can use the mode:

+t

The combination ‘o+s’ has no effect. On GNU systems the combinations ‘u+t’ and ‘g+t’
have no effect, and ‘o+t’ acts like plain ‘+t’.

The ‘=’ operator is not very useful with special mode bits. For example, the mode:

o=t

does set the restricted deletion flag or sticky bit, but it also removes all read, write, and
execute/search permissions that users not in the file’s group might have had for it.

See Section 27.5 [Directory Setuid and Setgid], page 233, for additional rules concerning
set-user-ID and set-group-ID bits and directories.

27.2.4 Conditional Executability

There is one more special type of symbolic permission: if you use ‘X’ instead of ‘x’, ex-
ecute/search permission is affected only if the file is a directory or already had execute
permission.

For example, this mode:

a+X

gives all users permission to search directories, or to execute files if anyone could execute
them before.

27.2.5 Making Multiple Changes

The format of symbolic modes is actually more complex than described above (see
Section 27.2.1 [Setting Permissions], page 228). It provides two ways to make multiple
changes to files’ mode bits.

The first way is to specify multiple operation and permissions parts after a users part
in the symbolic mode.

Chapter 27: File permissions 231

For example, the mode:

og+rX-w

gives users other than the owner of the file read permission and, if it is a directory or if
someone already had execute permission to it, gives them execute/search permission; and
it also denies them write permission to the file. It does not affect the permission that the
owner of the file has for it. The above mode is equivalent to the two modes:

og+rX

og-w

The second way to make multiple changes is to specify more than one simple symbolic
mode, separated by commas. For example, the mode:

a+r,go-w

gives everyone permission to read the file and removes write permission on it for all users
except its owner. Another example:

u=rwx,g=rx,o=

sets all of the permission bits for the file explicitly. (It gives users who are not in the file’s
group no permission at all for it.)

The two methods can be combined. The mode:

a+r,g+x-w

gives all users permission to read the file, and gives users who are in the file’s group permis-
sion to execute/search it as well, but not permission to write to it. The above mode could
be written in several different ways; another is:

u+r,g+rx,o+r,g-w

27.2.6 The Umask and Protection

If the users part of a symbolic mode is omitted, it defaults to ‘a’ (affect all users), except
that any permissions that are set in the system variable umask are not affected. The value
of umask can be set using the umask command. Its default value varies from system to
system.

Omitting the users part of a symbolic mode is generally not useful with operations other
than ‘+’. It is useful with ‘+’ because it allows you to use umask as an easily customizable
protection against giving away more permission to files than you intended to.

As an example, if umask has the value 2, which removes write permission for users who
are not in the file’s group, then the mode:

+w

adds permission to write to the file to its owner and to other users who are in the file’s
group, but not to other users. In contrast, the mode:

a+w

ignores umask, and does give write permission for the file to all users.

Chapter 27: File permissions 232

27.3 Numeric Modes

As an alternative to giving a symbolic mode, you can give an octal (base 8) number that
represents the mode.

The permissions granted to the user, to other users in the file’s group, and to other users
not in the file’s group each require three bits: one bit for read, one for write, and one for
execute/search permission. These three bits are represented as one octal digit; for example,
if all three are present, the resulting 111 (in binary) is represented as the digit 7 (in octal).
The three special mode bits also require one bit each, and they are as a group represented
as another octal digit. Here is how the bits are arranged, starting with the highest valued
bit:

Value in Corresponding

Mode Mode Bit

Special mode bits:

4000 Set user ID

2000 Set group ID

1000 Restricted deletion flag or sticky bit

The file’s owner:

400 Read

200 Write

100 Execute/search

Other users in the file’s group:

40 Read

20 Write

10 Execute/search

Other users not in the file’s group:

4 Read

2 Write

1 Execute/search

For example, numeric mode ‘4751’ corresponds to symbolic mode ‘u=srwx,g=rx,o=x’,
and numeric mode ‘664’ corresponds to symbolic mode ‘ug=rw,o=r’. Numeric mode ‘0’
corresponds to symbolic mode ‘a=’.

A numeric mode is usually shorter than the corresponding symbolic mode, but it is
limited in that normally it cannot take into account the previous file mode bits; it can only
set them absolutely. The set-user-ID and set-group-ID bits of directories are an exception
to this general limitation. See Section 27.5 [Directory Setuid and Setgid], page 233. Also,
operator numeric modes can take previous file mode bits into account. See Section 27.4
[Operator Numeric Modes], page 233.

Numeric modes are always interpreted in octal; you do not have to add a leading ‘0’,
as you do in C. Mode ‘0055’ is the same as mode ‘55’. However, modes of five digits or
more, such as ‘00055’, are sometimes special (see Section 27.5 [Directory Setuid and Setgid],
page 233).

Chapter 27: File permissions 233

27.4 Operator Numeric Modes

An operator numeric mode is a numeric mode that is prefixed by a ‘-’, ‘+’, or ‘=’ operator,
which has the same interpretation as in symbolic modes. For example, ‘+440’ enables
read permission for the file’s owner and group, ‘-1’ disables execute permission for other
users, and ‘=600’ clears all permissions except for enabling read-write permissions for the
file’s owner. Operator numeric modes can be combined with symbolic modes by separating
them with a comma; for example, ‘=0,u+r’ clears all permissions except for enabling read
permission for the file’s owner.

The commands ‘chmod =755 dir’ and ‘chmod 755 dir’ differ in that the former clears the
directory dir’s setuid and setgid bits, whereas the latter preserves them. See Section 27.5
[Directory Setuid and Setgid], page 233.

Operator numeric modes are a GNU extension.

27.5 Directories and the Set-User-ID and Set-Group-ID Bits

On most systems, if a directory’s set-group-ID bit is set, newly created subfiles inherit the
same group as the directory, and newly created subdirectories inherit the set-group-ID bit
of the parent directory. On a few systems, a directory’s set-user-ID bit has a similar effect
on the ownership of new subfiles and the set-user-ID bits of new subdirectories. These
mechanisms let users share files more easily, by lessening the need to use chmod or chown
to share new files.

These convenience mechanisms rely on the set-user-ID and set-group-ID bits of direc-
tories. If commands like chmod and mkdir routinely cleared these bits on directories, the
mechanisms would be less convenient and it would be harder to share files. Therefore, a
command like chmod does not affect the set-user-ID or set-group-ID bits of a directory unless
the user specifically mentions them in a symbolic mode, or uses an operator numeric mode
such as ‘=755’, or sets them in a numeric mode, or clears them in a numeric mode that has
five or more octal digits. For example, on systems that support set-group-ID inheritance:

These commands leave the set-user-ID and

set-group-ID bits of the subdirectories alone,

so that they retain their default values.

mkdir A B C

chmod 755 A

chmod 0755 B

chmod u=rwx,go=rx C

mkdir -m 755 D

mkdir -m 0755 E

mkdir -m u=rwx,go=rx F

If you want to try to set these bits, you must mention them explicitly in the symbolic
or numeric modes, e.g.:

These commands try to set the set-user-ID

and set-group-ID bits of the subdirectories.

mkdir G

chmod 6755 G

chmod +6000 G

234

chmod u=rwx,go=rx,a+s G

mkdir -m 6755 H

mkdir -m +6000 I

mkdir -m u=rwx,go=rx,a+s J

If you want to try to clear these bits, you must mention them explicitly in a symbolic
mode, or use an operator numeric mode, or specify a numeric mode with five or more octal
digits, e.g.:

These commands try to clear the set-user-ID

and set-group-ID bits of the directory D.

chmod a-s D

chmod -6000 D

chmod =755 D

chmod 00755 D

This behavior is a GNU extension. Portable scripts should not rely on requests to set or
clear these bits on directories, as POSIX allows implementations to ignore these requests.
The GNU behavior with numeric modes of four or fewer digits is intended for scripts portable
to systems that preserve these bits; the behavior with numeric modes of five or more digits
is for scripts portable to systems that do not preserve the bits.

235

28 File timestamps

Standard POSIX files have three timestamps: the access timestamp (atime) of the last read,
the modification timestamp (mtime) of the last write, and the status change timestamp
(ctime) of the last change to the file’s meta-information. Some file systems support a fourth
time: the birth timestamp (birthtime) of when the file was created; by definition, birthtime
never changes.

One common example of a ctime change is when the permissions of a file change. Chang-
ing the permissions doesn’t access the file, so atime doesn’t change, nor does it modify the
file, so the mtime doesn’t change. Yet, something about the file itself has changed, and this
must be noted somewhere. This is the job of the ctime field. This is necessary, so that, for
example, a backup program can make a fresh copy of the file, including the new permis-
sions value. Another operation that modifies a file’s ctime without affecting the others is
renaming.

Naively, a file’s atime, mtime, and ctime are set to the current time whenever you read,
write, or change the attributes of the file respectively, and searching a directory counts as
reading it. A file’s atime and mtime can also be set directly, via the touch command (see
Section 13.4 [touch invocation], page 137). In practice, though, timestamps are not updated
quite that way.

For efficiency reasons, many systems are lazy about updating atimes: when a program
accesses a file, they may delay updating the file’s atime, or may not update the file’s atime
if the file has been accessed recently, or may not update the atime at all. Similar laziness,
though typically not quite so extreme, applies to mtimes and ctimes.

Some systems emulate timestamps instead of supporting them directly, and these em-
ulations may disagree with the naive interpretation. For example, a system may fake an
atime or ctime by using the mtime.

The determination of what time is “current” depends on the platform. Platforms with
network file systems often use different clocks for the operating system and for file systems;
because updates typically uses file systems’ clocks by default, clock skew can cause the
resulting file timestamps to appear to be in a program’s “future” or “past”.

When the system updates a file timestamp to a desired time t (which is either the current
time, or a time specified via the touch command), there are several reasons the file’s time-
stamp may be set to a value that differs from t. First, t may have a higher resolution than
supported. Second, a file system may use different resolutions for different types of times.
Third, file timestamps may use a different resolution than operating system timestamps.
Fourth, the operating system primitives used to update timestamps may employ yet a dif-
ferent resolution. For example, in theory a file system might use 10-microsecond resolution
for access timestamp and 100-nanosecond resolution for modification timestamp, and the
operating system might use nanosecond resolution for the current time and microsecond
resolution for the primitive that touch uses to set a file’s timestamp to an arbitrary value.

236

29 Date input formats

First, a quote:

Our units of temporal measurement, from seconds on up to months, are so
complicated, asymmetrical and disjunctive so as to make coherent mental reck-
oning in time all but impossible. Indeed, had some tyrannical god contrived
to enslave our minds to time, to make it all but impossible for us to escape
subjection to sodden routines and unpleasant surprises, he could hardly have
done better than handing down our present system. It is like a set of trape-
zoidal building blocks, with no vertical or horizontal surfaces, like a language in
which the simplest thought demands ornate constructions, useless particles and
lengthy circumlocutions. Unlike the more successful patterns of language and
science, which enable us to face experience boldly or at least level-headedly, our
system of temporal calculation silently and persistently encourages our terror
of time.

. . . It is as though architects had to measure length in feet, width in meters
and height in ells; as though basic instruction manuals demanded a knowledge
of five different languages. It is no wonder then that we often look into our own
immediate past or future, last Tuesday or a week from Sunday, with feelings of
helpless confusion. . . .

—Robert Grudin, Time and the Art of Living.

This section describes the textual date representations that GNU programs accept.
These are the strings you, as a user, can supply as arguments to the various programs.
The C interface (via the parse_datetime function) is not described here.

29.1 General date syntax

A date is a string, possibly empty, containing many items separated by whitespace. The
whitespace may be omitted when no ambiguity arises. The empty string means the begin-
ning of today (i.e., midnight). Order of the items is immaterial. A date string may contain
many flavors of items:

• calendar date items

• time of day items

• time zone items

• combined date and time of day items

• day of the week items

• relative items

• pure numbers.

We describe each of these item types in turn, below.

A few ordinal numbers may be written out in words in some contexts. This is most
useful for specifying day of the week items or relative items (see below). Among the most
commonly used ordinal numbers, the word ‘last’ stands for −1, ‘this’ stands for 0, and
‘first’ and ‘next’ both stand for 1. Because the word ‘second’ stands for the unit of time
there is no way to write the ordinal number 2, but for convenience ‘third’ stands for 3,

Chapter 29: Date input formats 237

‘fourth’ for 4, ‘fifth’ for 5, ‘sixth’ for 6, ‘seventh’ for 7, ‘eighth’ for 8, ‘ninth’ for 9,
‘tenth’ for 10, ‘eleventh’ for 11 and ‘twelfth’ for 12.

When a month is written this way, it is still considered to be written numerically, instead
of being “spelled in full”; this changes the allowed strings.

In the current implementation, only English is supported for words and abbreviations
like ‘AM’, ‘DST’, ‘EST’, ‘first’, ‘January’, ‘Sunday’, ‘tomorrow’, and ‘year’.

The output of the date command is not always acceptable as a date string, not only
because of the language problem, but also because there is no standard meaning for time
zone items like ‘IST’. When using date to generate a date string intended to be parsed
later, specify a date format that is independent of language and that does not use time zone
items other than ‘UTC’ and ‘Z’. Here are some ways to do this:

$ LC_ALL=C TZ=UTC0 date

Mon Mar 1 00:21:42 UTC 2004

$ TZ=UTC0 date +’%Y-%m-%d %H:%M:%SZ’

2004-03-01 00:21:42Z

$ date --rfc-3339=ns # --rfc-3339 is a GNU extension.

2004-02-29 16:21:42.692722128-08:00

$ date --rfc-2822 # a GNU extension

Sun, 29 Feb 2004 16:21:42 -0800

$ date +’%Y-%m-%d %H:%M:%S %z’ # %z is a GNU extension.

2004-02-29 16:21:42 -0800

$ date +’@%s.%N’ # %s and %N are GNU extensions.

@1078100502.692722128

Alphabetic case is completely ignored in dates. Comments may be introduced between
round parentheses, as long as included parentheses are properly nested. Hyphens not fol-
lowed by a digit are currently ignored. Leading zeros on numbers are ignored.

Invalid dates like ‘2005-02-29’ or times like ‘24:00’ are rejected. In the typical case
of a host that does not support leap seconds, a time like ‘23:59:60’ is rejected even if it
corresponds to a valid leap second.

29.2 Calendar date items

A calendar date item specifies a day of the year. It is specified differently, depending on
whether the month is specified numerically or literally. All these strings specify the same
calendar date:

1972-09-24 # ISO 8601.

72-9-24 # Assume 19xx for 69 through 99,

20xx for 00 through 68.

72-09-24 # Leading zeros are ignored.

9/24/72 # Common U.S. writing.

24 September 1972

24 Sept 72 # September has a special abbreviation.

24 Sep 72 # Three-letter abbreviations always allowed.

Sep 24, 1972

24-sep-72

24sep72

Chapter 29: Date input formats 238

The year can also be omitted. In this case, the last specified year is used, or the current
year if none. For example:

9/24

sep 24

Here are the rules.

For numeric months, the ISO 8601 format ‘year-month-day’ is allowed, where year is
any positive number, month is a number between 01 and 12, and day is a number between
01 and 31. A leading zero must be present if a number is less than ten. If year is 68 or
smaller, then 2000 is added to it; otherwise, if year is less than 100, then 1900 is added
to it. The construct ‘month/day/year’, popular in the United States, is accepted. Also
‘month/day’, omitting the year.

Literal months may be spelled out in full: ‘January’, ‘February’, ‘March’, ‘April’, ‘May’,
‘June’, ‘July’, ‘August’, ‘September’, ‘October’, ‘November’ or ‘December’. Literal months
may be abbreviated to their first three letters, possibly followed by an abbreviating dot. It
is also permitted to write ‘Sept’ instead of ‘September’.

When months are written literally, the calendar date may be given as any of the following:

day month year

day month

month day year

day-month-year

Or, omitting the year:

month day

29.3 Time of day items

A time of day item in date strings specifies the time on a given day. Here are some examples,
all of which represent the same time:

20:02:00.000000

20:02

8:02pm

20:02-0500 # In EST (U.S. Eastern Standard Time).

More generally, the time of day may be given as ‘hour:minute:second’, where hour is
a number between 0 and 23, minute is a number between 0 and 59, and second is a number
between 0 and 59 possibly followed by ‘.’ or ‘,’ and a fraction containing one or more digits.
Alternatively, ‘:second’ can be omitted, in which case it is taken to be zero. On the rare
hosts that support leap seconds, second may be 60.

If the time is followed by ‘am’ or ‘pm’ (or ‘a.m.’ or ‘p.m.’), hour is restricted to run from
1 to 12, and ‘:minute’ may be omitted (taken to be zero). ‘am’ indicates the first half of
the day, ‘pm’ indicates the second half of the day. In this notation, 12 is the predecessor
of 1: midnight is ‘12am’ while noon is ‘12pm’. (This is the zero-oriented interpretation of
‘12am’ and ‘12pm’, as opposed to the old tradition derived from Latin which uses ‘12m’ for
noon and ‘12pm’ for midnight.)

The time may alternatively be followed by a time zone correction, expressed as ‘shhmm’,
where s is ‘+’ or ‘-’, hh is a number of zone hours and mm is a number of zone minutes.

Chapter 29: Date input formats 239

The zone minutes term, mm, may be omitted, in which case the one- or two-digit correction
is interpreted as a number of hours. You can also separate hh from mm with a colon.
When a time zone correction is given this way, it forces interpretation of the time relative
to Coordinated Universal Time (UTC), overriding any previous specification for the time
zone or the local time zone. For example, ‘+0530’ and ‘+05:30’ both stand for the time
zone 5.5 hours ahead of UTC (e.g., India). This is the best way to specify a time zone
correction by fractional parts of an hour. The maximum zone correction is 24 hours.

Either ‘am’/‘pm’ or a time zone correction may be specified, but not both.

29.4 Time zone items

A time zone item specifies an international time zone, indicated by a small set of letters,
e.g., ‘UTC’ or ‘Z’ for Coordinated Universal Time. Any included periods are ignored. By
following a non-daylight-saving time zone by the string ‘DST’ in a separate word (that
is, separated by some white space), the corresponding daylight saving time zone may be
specified. Alternatively, a non-daylight-saving time zone can be followed by a time zone
correction, to add the two values. This is normally done only for ‘UTC’; for example,
‘UTC+05:30’ is equivalent to ‘+05:30’.

Time zone items other than ‘UTC’ and ‘Z’ are obsolescent and are not recommended,
because they are ambiguous; for example, ‘EST’ has a different meaning in Australia than
in the United States, and ‘A’ has different meaning as a military time zone than as an
obsolescent RFC 822 time zone. Instead, it’s better to use unambiguous numeric time zone
corrections like ‘-0500’, as described in the previous section.

If neither a time zone item nor a time zone correction is supplied, timestamps are in-
terpreted using the rules of the default time zone (see Section 29.10 [Specifying time zone
rules], page 241).

29.5 Combined date and time of day items

The ISO 8601 date and time of day extended format consists of an ISO 8601 date, a ‘T’
character separator, and an ISO 8601 time of day. This format is also recognized if the ‘T’
is replaced by a space.

In this format, the time of day should use 24-hour notation. Fractional seconds are
allowed, with either comma or period preceding the fraction. ISO 8601 fractional minutes
and hours are not supported. Typically, hosts support nanosecond timestamp resolution;
excess precision is silently discarded.

Here are some examples:

2012-09-24T20:02:00.052-05:00

2012-12-31T23:59:59,999999999+11:00

1970-01-01 00:00Z

29.6 Day of week items

The explicit mention of a day of the week will forward the date (only if necessary) to reach
that day of the week in the future.

Days of the week may be spelled out in full: ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’,
‘Thursday’, ‘Friday’ or ‘Saturday’. Days may be abbreviated to their first three letters,

Chapter 29: Date input formats 240

optionally followed by a period. The special abbreviations ‘Tues’ for ‘Tuesday’, ‘Wednes’
for ‘Wednesday’ and ‘Thur’ or ‘Thurs’ for ‘Thursday’ are also allowed.

A number may precede a day of the week item to move forward supplementary weeks.
It is best used in expression like ‘third monday’. In this context, ‘last day’ or ‘next day’
is also acceptable; they move one week before or after the day that day by itself would
represent.

A comma following a day of the week item is ignored.

29.7 Relative items in date strings

Relative items adjust a date (or the current date if none) forward or backward. The effects
of relative items accumulate. Here are some examples:

1 year

1 year ago

3 years

2 days

The unit of time displacement may be selected by the string ‘year’ or ‘month’ for moving
by whole years or months. These are fuzzy units, as years and months are not all of equal
duration. More precise units are ‘fortnight’ which is worth 14 days, ‘week’ worth 7 days,
‘day’ worth 24 hours, ‘hour’ worth 60 minutes, ‘minute’ or ‘min’ worth 60 seconds, and
‘second’ or ‘sec’ worth one second. An ‘s’ suffix on these units is accepted and ignored.

The unit of time may be preceded by a multiplier, given as an optionally signed number.
Unsigned numbers are taken as positively signed. No number at all implies 1 for a multiplier.
Following a relative item by the string ‘ago’ is equivalent to preceding the unit by a multiplier
with value −1.

The string ‘tomorrow’ is worth one day in the future (equivalent to ‘day’), the string
‘yesterday’ is worth one day in the past (equivalent to ‘day ago’).

The strings ‘now’ or ‘today’ are relative items corresponding to zero-valued time dis-
placement, these strings come from the fact a zero-valued time displacement represents the
current time when not otherwise changed by previous items. They may be used to stress
other items, like in ‘12:00 today’. The string ‘this’ also has the meaning of a zero-valued
time displacement, but is preferred in date strings like ‘this thursday’.

When a relative item causes the resulting date to cross a boundary where the clocks
were adjusted, typically for daylight saving time, the resulting date and time are adjusted
accordingly.

The fuzz in units can cause problems with relative items. For example, ‘2003-07-31 -1

month’ might evaluate to 2003-07-01, because 2003-06-31 is an invalid date. To determine
the previous month more reliably, you can ask for the month before the 15th of the current
month. For example:

$ date -R

Thu, 31 Jul 2003 13:02:39 -0700

$ date --date=’-1 month’ +’Last month was %B?’

Last month was July?

$ date --date="$(date +%Y-%m-15) -1 month" +’Last month was %B!’

Last month was June!

Chapter 29: Date input formats 241

Also, take care when manipulating dates around clock changes such as daylight saving
leaps. In a few cases these have added or subtracted as much as 24 hours from the clock,
so it is often wise to adopt universal time by setting the TZ environment variable to ‘UTC0’
before embarking on calendrical calculations.

29.8 Pure numbers in date strings

The precise interpretation of a pure decimal number depends on the context in the date
string.

If the decimal number is of the form yyyymmdd and no other calendar date item (see
Section 29.2 [Calendar date items], page 237) appears before it in the date string, then
yyyy is read as the year, mm as the month number and dd as the day of the month, for
the specified calendar date.

If the decimal number is of the form hhmm and no other time of day item appears before
it in the date string, then hh is read as the hour of the day and mm as the minute of the
hour, for the specified time of day. mm can also be omitted.

If both a calendar date and a time of day appear to the left of a number in the date
string, but no relative item, then the number overrides the year.

29.9 Seconds since the Epoch

If you precede a number with ‘@’, it represents an internal timestamp as a count of seconds.
The number can contain an internal decimal point (either ‘.’ or ‘,’); any excess precision
not supported by the internal representation is truncated toward minus infinity. Such a
number cannot be combined with any other date item, as it specifies a complete timestamp.

Internally, computer times are represented as a count of seconds since an epoch—a well-
defined point of time. On GNU and POSIX systems, the epoch is 1970-01-01 00:00:00 UTC,
so ‘@0’ represents this time, ‘@1’ represents 1970-01-01 00:00:01 UTC, and so forth. GNU
and most other POSIX-compliant systems support such times as an extension to POSIX,
using negative counts, so that ‘@-1’ represents 1969-12-31 23:59:59 UTC.

Traditional Unix systems count seconds with 32-bit two’s-complement integers and can
represent times from 1901-12-13 20:45:52 through 2038-01-19 03:14:07 UTC. More modern
systems use 64-bit counts of seconds with nanosecond subcounts, and can represent all the
times in the known lifetime of the universe to a resolution of 1 nanosecond.

On most hosts, these counts ignore the presence of leap seconds. For example, on most
hosts ‘@915148799’ represents 1998-12-31 23:59:59 UTC, ‘@915148800’ represents 1999-01-
01 00:00:00 UTC, and there is no way to represent the intervening leap second 1998-12-31
23:59:60 UTC.

29.10 Specifying time zone rules

Normally, dates are interpreted using the rules of the current time zone, which in turn are
specified by the TZ environment variable, or by a system default if TZ is not set. To specify
a different set of default time zone rules that apply just to one date, start the date with a
string of the form ‘TZ="rule"’. The two quote characters (‘"’) must be present in the date,
and any quotes or backslashes within rule must be escaped by a backslash.

Chapter 29: Date input formats 242

For example, with the GNU date command you can answer the question “What time is
it in New York when a Paris clock shows 6:30am on October 31, 2004?” by using a date
beginning with ‘TZ="Europe/Paris"’ as shown in the following shell transcript:

$ export TZ="America/New_York"

$ date --date=’TZ="Europe/Paris" 2004-10-31 06:30’

Sun Oct 31 01:30:00 EDT 2004

In this example, the --date operand begins with its own TZ setting, so the rest of that
operand is processed according to ‘Europe/Paris’ rules, treating the string ‘2004-10-31
06:30’ as if it were in Paris. However, since the output of the date command is processed
according to the overall time zone rules, it uses New York time. (Paris was normally six
hours ahead of New York in 2004, but this example refers to a brief Halloween period when
the gap was five hours.)

A TZ value is a rule that typically names a location in the ‘tz’ database (https://
www.iana.org/time-zones). A recent catalog of location names appears in the TWiki
Date and Time Gateway (https: / / twiki . org / cgi-bin / xtra / tzdatepick . html).
A few non-GNU hosts require a colon before a location name in a TZ setting, e.g.,
‘TZ=":America/New_York"’.

The ‘tz’ database includes a wide variety of locations ranging from
‘Arctic/Longyearbyen’ to ‘Antarctica/South_Pole’, but if you are at sea and
have your own private time zone, or if you are using a non-GNU host that does not
support the ‘tz’ database, you may need to use a POSIX rule instead. Simple POSIX
rules like ‘UTC0’ specify a time zone without daylight saving time; other rules can specify
simple daylight saving regimes. See Section “Specifying the Time Zone with TZ” in The
GNU C Library .

29.11 Authors of parse_datetime

parse_datetime started life as getdate, as originally implemented by Steven M. Bellovin
(smb@research.att.com) while at the University of North Carolina at Chapel Hill. The
code was later tweaked by a couple of people on Usenet, then completely overhauled by
Rich $alz (rsalz@bbn.com) and Jim Berets (jberets@bbn.com) in August, 1990. Various
revisions for the GNU system were made by David MacKenzie, Jim Meyering, Paul Eggert
and others, including renaming it to get_date to avoid a conflict with the alternative Posix
function getdate, and a later rename to parse_datetime. The Posix function getdate

can parse more locale-specific dates using strptime, but relies on an environment variable
and external file, and lacks the thread-safety of parse_datetime.

This chapter was originally produced by François Pinard (pinard@iro.umontreal.ca)
from the parse_datetime.y source code, and then edited by K. Berry (kb@cs.umb.edu).

https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://twiki.org/cgi-bin/xtra/tzdatepick.html
https://twiki.org/cgi-bin/xtra/tzdatepick.html
mailto:smb@research.att.com
mailto:rsalz@bbn.com
mailto:jberets@bbn.com
mailto:pinard@iro.umontreal.ca
mailto:kb@cs.umb.edu

243

30 Version sort ordering

30.1 Version sort overview

version sort ordering (and similarly, natural sort ordering) is a method to sort items such
as file names and lines of text in an order that feels more natural to people, when the text
contains a mixture of letters and digits.

Standard sorting usually does not produce the order that one expects because compar-
isons are made on a character-by-character basis.

Compare the sorting of the following items:

Alphabetical sort: Version Sort:

a1 a1

a120 a2

a13 a13

a2 a120

version sort functionality in GNU coreutils is available in the ‘ls -v’, ‘ls
--sort=version’, ‘sort -V’, ‘sort --version-sort’ commands.

30.1.1 Using version sort in GNU coreutils

Two GNU coreutils programs use version sort: ls and sort.

To list files in version sort order, use ls with -v or --sort=version options:

default sort: version sort:

$ ls -1 $ ls -1 -v

a1 a1

a100 a1.4

a1.13 a1.13

a1.4 a1.40

a1.40 a2

a2 a100

To sort text files in version sort order, use sort with the -V option:

$ cat input

b3

b11

b1

b20

alphabetical order: version sort order:

$ sort input $ sort -V input

b1 b1

b11 b3

Chapter 30: Version sort ordering 244

b20 b11

b3 b20

To sort a specific column in a file use -k/--key with ‘V’ ordering option:

$ cat input2

1000 b3 apples

2000 b11 oranges

3000 b1 potatoes

4000 b20 bananas

$ sort -k2V,2 input2

3000 b1 potatoes

1000 b3 apples

2000 b11 oranges

4000 b20 bananas

30.1.2 Origin of version sort and differences from natural sort

In GNU coreutils, the name version sort was chosen because it is based on Debian
GNU/Linux’s algorithm of sorting packages’ versions.

Its goal is to answer the question “which package is newer, firefox-60.7.2 or
firefox-60.12.3 ?”

In coreutils this algorithm was slightly modified to work on more general input such
as textual strings and file names (see Section 30.3 [Differences from the official Debian
Algorithm], page 249).

In other contexts, such as other programs and other programming languages, a sim-
ilar sorting functionality is called natural sort (https: / / en . wikipedia . org / wiki /
Natural_sort_order).

30.1.3 Correct/Incorrect ordering and Expected/Unexpected
results

Currently there is no standard for version/natural sort ordering.

That is: there is no one correct way or universally agreed-upon way to order items. Each
program and each programming language can decide its own ordering algorithm and call it
’natural sort’ (or other various names).

See Section 30.4.3 [Other version/natural sort implementations], page 253, for many
examples of differing sorting possibilities, each with its own rules and variations.

If you do suspect a bug in coreutils’ implementation of version-sort, see Section 30.4.2
[Reporting bugs or incorrect results], page 253, on how to report them.

30.2 Implementation Details

GNU coreutils’ version sort algorithm is based on Debian’s versioning scheme (https://
www.debian.org/doc/debian-policy/ch-controlfields.html#version), specifically on
the "upstream version" part.

This section describes the ordering rules.

https://en.wikipedia.org/wiki/Natural_sort_order
https://en.wikipedia.org/wiki/Natural_sort_order
https://www.debian.org/doc/debian-policy/ch-controlfields.html#version
https://www.debian.org/doc/debian-policy/ch-controlfields.html#version

Chapter 30: Version sort ordering 245

The next section (Section 30.3 [Differences from the official Debian Algorithm], page 249)
describes some differences between GNU coreutils implementation and Debian’s official
algorithm.

30.2.1 Version-sort ordering rules

The version sort ordering rules are:

1. The strings are compared from left to right.

2. First the initial part of each string consisting entirely of non-digit characters is deter-
mined.

1. These two parts (one of which may be empty) are compared lexically. If a difference
is found it is returned.

2. The lexical comparison is a comparison of ASCII values modified so that:

1. all the letters sort earlier than all the non-letters and

2. so that a tilde sorts before anything, even the end of a part.

3. Then the initial part of the remainder of each string which consists entirely of digit
characters is determined. The numerical values of these two parts are compared, and
any difference found is returned as the result of the comparison.

1. For these purposes an empty string (which can only occur at the end of one or
both version strings being compared) counts as zero.

4. These two steps (comparing and removing initial non-digit strings and initial digit
strings) are repeated until a difference is found or both strings are exhausted.

Consider the version-sort comparison of two file names: foo07.7z and foo7a.7z. The
two strings will be broken down to the following parts, and the parts compared respectively
from each string:

foo vs foo (rule 2, non-digits characters)
07 vs 7 (rule 3, digits characters)
. vs a. (rule 2)
7 vs 7 (rule 3)
z vs z (rule 2)

Comparison flow based on above algorithm:

1. The first parts (foo) are identical in both strings.

2. The second parts (07 and 7) are compared numerically, and are identical.

3. The third parts (‘.’ vs ‘a.’) are compared lexically by ASCII value (rule 2.2).

4. The first character of the first string (‘.’) is compared to the first character of the
second string (‘a’).

5. Rule 2.2.1 dictates that "all letters sorts earlier than all non-letters". Hence, ‘a’ comes
before ‘.’.

6. The returned result is that foo7a.7z comes before foo07.7z.

Result when using sort:

$ cat input3

foo07.7z

foo7a.7z

Chapter 30: Version sort ordering 246

$ sort -V input3

foo7a.7z

foo07.7z

See Section 30.3 [Differences from the official Debian Algorithm], page 249, for additional
rules that extend the Debian algorithm in coreutils.

30.2.2 Version sort is not the same as numeric sort

Consider the following text file:

$ cat input4

8.10

8.5

8.1

8.01

8.010

8.100

8.49

Numerical Sort: Version Sort:

$ sort -n input4 $ sort -V input4

8.01 8.01

8.010 8.1

8.1 8.5

8.10 8.010

8.100 8.10

8.49 8.49

8.5 8.100

Numeric sort (‘sort -n’) treats the entire string as a single numeric value, and compares
it to other values. For example, 8.1, 8.10 and 8.100 are numerically equivalent, and are
ordered together. Similarly, 8.49 is numerically smaller than 8.5, and appears before first.

Version sort (‘sort -V’) first breaks down the string into digits and non-digits parts, and
only then compares each part (see annotated example in Version-sort ordering rules).

Comparing the string 8.1 to 8.01, first the ‘8’ characters are compared (and are identi-
cal), then the dots (‘.’) are compared and are identical, and lastly the remaining digits are
compared numerically (1 and 01) - which are numerically equivalent. Hence, 8.01 and 8.1

are grouped together.

Similarly, comparing 8.5 to 8.49 - the ‘8’ and ‘.’ parts are identical, then the numeric
values 5 and 49 are compared. The resulting 5 appears before 49.

This sorting order (where 8.5 comes before 8.49) is common when assigning versions
to computer programs (while perhaps not intuitive or ’natural’ for people).

Chapter 30: Version sort ordering 247

30.2.3 Punctuation Characters

Punctuation characters are sorted by ASCII order (rule 2.2).

$ touch 1.0.5_src.tar.gz 1.0_src.tar.gz

$ ls -v -1

1.0.5_src.tar.gz

1.0_src.tar.gz

Why is 1.0.5_src.tar.gz listed before 1.0_src.tar.gz ?

Based on the Section 30.2.1 [algorithm], page 245, above, the strings are broken down
into the following parts:

1 vs 1 (rule 3, all digit characters)
. vs . (rule 2, all non-digit characters)
0 vs 0 (rule 3)
. vs _src.tar.gz (rule 2)
5 vs empty string (no more character in the file name)

_src.tar.gz vs empty string

The fourth parts (‘.’ and _src.tar.gz) are compared lexically by ASCII order. The
character ‘.’ (ASCII value 46) is smaller than ‘_’ (ASCII value 95) - and should be listed
before it.

Hence, 1.0.5_src.tar.gz is listed first.

If a different character appears instead of the underscore (for example, percent sign ‘%’
ASCII value 37, which is smaller than dot’s ASCII value of 46), that file will be listed first:

$ touch 1.0.5_src.tar.gz 1.0%zzzzz.gz

1.0%zzzzz.gz

1.0.5_src.tar.gz

The same reasoning applies to the following example: The character ‘.’ has ASCII value
46, and is smaller than slash character ‘/’ ASCII value 47:

$ cat input5

3.0/

3.0.5

$ sort -V input5

3.0.5

3.0/

30.2.4 Punctuation Characters vs letters

Rule 2.2.1 dictates that letters sorts earlier than all non-letters (after breaking down a string
to digits and non-digits parts).

$ cat input6

a%

az

$ sort -V input6

az

Chapter 30: Version sort ordering 248

a%

The input strings consist entirely of non-digits, and based on the above algorithm have
only one part, all non-digit characters (‘a%’ vs ‘az’).

Each part is then compared lexically, character-by-character. ‘a’ compares identically in
both strings.

Rule 2.2.1 dictates that letters (‘z’) sorts earlier than all non-letters (‘%’) - hence ‘az’
appears first (despite ‘z’ having ASCII value of 122, much bigger than ‘%’ with ASCII value
37).

30.2.5 Tilde ‘~’ character

Rule 2.2.2 dictates that tilde character ‘~’ (ASCII 126) sorts before all other non-digit
characters, including an empty part.

$ cat input7

1

1%

1.2

1~

~

$ sort -V input7

~

1~

1

1%

1.2

The sorting algorithm starts by breaking down the string into non-digits (rule 2) and
digits parts (rule 3).

In the above input file, only the last line in the input file starts with a non-digit (‘~’).
This is the first part. All other lines in the input file start with a digit - their first non-digit
part is empty.

Based on rule 2.2.2, tilde ‘~’ sorts before all other non-digits including the empty part -
hence it comes before all other strings, and is listed first in the sorted output.

The remaining lines (1, 1%, 1.2, 1~) follow similar logic: The digit part is extracted
(1 for all strings) and compares identical. The following extracted parts for the remaining
input lines are: empty part, %, ., ~.

Tilde sorts before all others, hence the line 1~ appears next.

The remaining lines (1, 1%, 1.2) are sorted based on previously explained rules.

30.2.6 Version sort uses ASCII order, ignores locale, unicode
characters

In version sort, unicode characters are compared byte-by-byte according to their binary
representation, ignoring their unicode value or the current locale.

Most commonly, unicode characters (e.g. Greek Small Letter Alpha U+03B1 ‘α’) are
encoded as UTF-8 bytes (e.g. ‘α’ is encoded as UTF-8 sequence 0xCE 0xB1). The encoding

Chapter 30: Version sort ordering 249

will be compared byte-by-byte, e.g. first 0xCE (decimal value 206) then 0xB1 (decimal value
177).

$ touch aa az "a%" "aα"

$ ls -1 -v

aa

az

a%

aα

Ignoring the first letter (a) which is identical in all strings, the compared values are:

‘a’ and ‘z’ are letters, and sort earlier than all other non-digit characters.

Then, percent sign ‘%’ (ASCII value 37) is compared to the first byte of the UTF-8
sequence of ‘α’, which is 0xCE or 206). The value 37 is smaller, hence ‘a%’ is listed before
‘aα’.

30.3 Differences from the official Debian Algorithm

The GNU coreutils’ version sort algorithm differs slightly from the official Debian algorithm,
in order to accommodate more general usage and file name listing.

30.3.1 Minus/Hyphen ‘-’ and Colon ‘:’ characters

In Debian’s version string syntax the version consists of three parts:

[epoch:]upstream_version[-debian_revision]

The epoch and debian_revision parts are optional.

Example of such version strings:

60.7.2esr-1~deb9u1

52.9.0esr-1~deb9u1

1:2.3.4-1+b2

327-2

1:1.0.13-3

2:1.19.2-1+deb9u5

If the debian_revision part is not present, hyphen characters ‘-’ are not allowed. If
epoch is not present, colons ‘:’ are not allowed.

If these parts are present, hyphen and/or colons can appear only once in valid Debian
version strings.

In GNU coreutils, such restrictions are not reasonable (a file name can have many hy-
phens, a line of text can have many colons).

As a result, in GNU coreutils hyphens and colons are treated exactly like all other
punctuation characters (i.e., they are sorted after letters. See Punctuation Characters
above).

In Debian, these characters are treated differently than in coreutils: a version string with
hyphen will sort before similar strings without hyphens.

Compare:

$ touch abb ab-cd

Chapter 30: Version sort ordering 250

$ ls -v -1

abb

ab-cd

With Debian’s dpkg they will be listed as ab-cd first and abb second.

For further technical details see bug35939 (https://bugs.gnu.org/35939).

30.3.2 Additional hard-coded priorities in GNU coreutils’ version
sort

In GNU coreutils’ version sort algorithm, the following items have special priority and sort
earlier than all other characters (listed in order);

1. The empty string

2. The string ‘.’ (a single dot character, ASCII 46)

3. The string ‘..’ (two dot characters)

4. Strings start with a dot (‘.’) sort earlier than strings starting with any other characters.

Example:

$ printf "%s\n" a "" b "." c ".." ".d20" ".d3" | sort -V

.

..

.d3

.d20

a

b

c

These priorities make perfect sense for ‘ls -v’: The special files dot ‘.’ and dot-dot
‘..’ will be listed first, followed by any hidden files (files starting with a dot), followed by
non-hidden files.

For ‘sort -V’ these priorities might seem arbitrary. However, because the sorting code
is shared between the ls and sort program, the ordering rules are the same.

30.3.3 Special handling of file extensions

GNU coreutils’ version sort algorithm implements specialized handling of file extensions (or
strings that look like file names with extensions).

This nuanced implementation enables slightly more natural ordering of files.

The additional rules are:

1. A suffix (i.e., a file extension) is defined as: a dot, followed by a letter or tilde,
followed by one or more letters, digits, or tildes (possibly repeated more than
once), until the end of the string (technically, matching the regular expression
(\.[A-Za-z~][A-Za-z0-9~]*)*).

2. If the strings contains suffixes, the suffixes are temporarily removed, and the strings
are compared without them (using the Section 30.2.1 [algorithm], page 245, above).

https://bugs.gnu.org/35939

Chapter 30: Version sort ordering 251

3. If the suffix-less strings are identical, the suffix is restored and the entire strings are
compared.

4. If the non-suffixed strings differ, the result is returned and the suffix is effectively
ignored.

Examples for rule 1:

• hello-8.txt: the suffix is .txt

• hello-8.2.txt: the suffix is .txt (‘.2’ is not included because the dot is not followed
by a letter)

• hello-8.0.12.tar.gz: the suffix is .tar.gz (‘.0.12’ is not included)

• hello-8.2: no suffix (suffix is an empty string)

• hello.foobar65: the suffix is .foobar65

• gcc-c++-10.8.12-0.7rc2.fc9.tar.bz2: the suffix is .fc9.tar.bz2 (.7rc2 is not
included as it begins with a digit)

Examples for rule 2:

• Comparing hello-8.txt to hello-8.2.12.txt, the .txt suffix is temporarily removed
from both strings.

• Comparing foo-10.3.tar.gz to foo-10.tar.xz, the suffixes .tar.gz and .tar.xz

are temporarily removed from the strings.

Example for rule 3:

• Comparing hello.foobar65 to hello.foobar4, the suffixes (.foobar65 and
.foobar4) are temporarily removed. The remaining strings are identical (hello).
The suffixes are then restored, and the entire strings are compared (hello.foobar4
comes first).

Examples for rule 4:

• When comparing the strings hello-8.2.txt and hello-8.10.txt, the suffixes (.txt)
are temporarily removed. The remaining strings (hello-8.2 and hello-8.10) are
compared as previously described (hello-8.2 comes first). (In this case the suffix
removal algorithm does not have a noticeable effect on the resulting order.)

How does the suffix-removal algorithm effect ordering results?

Consider the comparison of hello-8.txt and hello-8.2.txt.

Without the suffix-removal algorithm, the strings will be broken down to the following
parts:

hello- vs hello- (rule 2, all non-digit characters)
8 vs 8 (rule 3, all digit characters)
.txt vs . (rule 2)
empty vs 2

empty vs .txt

The comparison of the third parts (‘.’ vs ‘.txt’) will determine that the shorter string
comes first - resulting in hello-8.2.txt appearing first.

Indeed this is the order in which Debian’s dpkg compares the strings.

Chapter 30: Version sort ordering 252

A more natural result is that hello-8.txt should come before hello-8.2.txt, and this
is where the suffix-removal comes into play:

The suffixes (.txt) are removed, and the remaining strings are broken down into the
following parts:

hello- vs hello- (rule 2, all non-digit characters)
8 vs 8 (rule 3, all digit characters)
empty vs . (rule 2)
empty vs 2

As empty strings sort before non-empty strings, the result is hello-8 being first.

A real-world example would be listing files such as: gcc_10.fc9.tar.gz and
gcc_10.8.12.7rc2.fc9.tar.bz2: Debian’s algorithm would list gcc_10.8.12.7rc2.fc9.tar.bz2
first, while ‘ls -v’ will list gcc_10.fc9.tar.gz first.

These priorities make sense for ‘ls -v’: Versioned files will be listed in a more natural
order.

For ‘sort -V’ these priorities might seem arbitrary. However, because the sorting code
is shared between the ls and sort program, the ordering rules are the same.

30.4 Advanced Topics

30.4.1 Comparing two strings using Debian’s algorithm

The Debian program dpkg (available on all Debian and Ubuntu installations) can compare
two strings using the --compare-versions option.

To use it, create a helper shell function (simply copy & paste the following snippet to
your shell command-prompt):

compver() {

dpkg --compare-versions "$1" lt "$2" \

&& printf "%s\n" "$1" "$2" \

|| printf "%s\n" "$2" "$1" ; \

}

Then compare two strings by calling compver:

$ compver 8.49 8.5

8.5

8.49

Note that dpkg will warn if the strings have invalid syntax:

$ compver "foo07.7z" "foo7a.7z"

dpkg: warning: version ’foo07.7z’ has bad syntax:

version number does not start with digit

dpkg: warning: version ’foo7a.7z’ has bad syntax:

version number does not start with digit

foo7a.7z

foo07.7z

$ compver "3.0/" "3.0.5"

dpkg: warning: version ’3.0/’ has bad syntax:

Chapter 30: Version sort ordering 253

invalid character in version number

3.0.5

3.0/

To illustrate the different handling of hyphens between Debian and coreutils’ algorithms
(see Section 30.3.1 [Minus/Hyphen and Colon characters], page 249):

$ compver abb ab-cd 2>/dev/null $ printf "abb\nab-cd\n" | sort -V

ab-cd abb

abb ab-cd

To illustrate the different handling of file extension: (see Section 30.3.3 [Special handling
of file extensions], page 250):

$ compver hello-8.txt hello-8.2.txt 2>/dev/null

hello-8.2.txt

hello-8.txt

$ printf "%s\n" hello-8.txt hello-8.2.txt | sort -V

hello-8.txt

hello-8.2.txt

30.4.2 Reporting bugs or incorrect results

If you suspect a bug in GNU coreutils’ version sort (i.e., in the output of ‘ls -v’ or ‘sort
-V’), please first check the following:

1. Is the result consistent with Debian’s own ordering (using dpkg, see Section 30.4.1
[Comparing two strings using Debian’s algorithm], page 252) ? If it is, then this is not
a bug - please do not report it.

2. If the result differs from Debian’s, is it explained by one of the sections in Section 30.3
[Differences from the official Debian Algorithm], page 249? If it is, then this is not a
bug - please do not report it.

3. If you have a question about specific ordering which is not explained here, please write
to coreutils@gnu.org, and provide a concise example that will help us diagnose the
issue.

4. If you still suspect a bug which is not explained by the above, please write to
bug-coreutils@gnu.org with a concrete example of the suspected incorrect output,
with details on why you think it is incorrect.

30.4.3 Other version/natural sort implementations

As previously mentioned, there are multiple variations on version/natural sort, each with
its own rules. Some examples are:

• Natural Sorting variants in Rosetta Code (https: / / rosettacode . org / wiki /
Natural_sorting).

• Python’s natsort package (https://pypi.org/project/natsort/) (includes de-
tailed description of their sorting rules: natsort - how it works (https://natsort.
readthedocs.io/en/master/howitworks.html)).

• Ruby’s version sorter (https://github.com/github/version_sorter).

mailto:coreutils@gnu.org
mailto:bug-coreutils@gnu.org
https://rosettacode.org/wiki/Natural_sorting
https://rosettacode.org/wiki/Natural_sorting
https://pypi.org/project/natsort/
https://natsort.readthedocs.io/en/master/howitworks.html
https://natsort.readthedocs.io/en/master/howitworks.html
https://github.com/github/version_sorter

Chapter 30: Version sort ordering 254

• Perl has multiple packages for natual and version sorts (each likely with its own rules
and nuances): Sort::Naturally (https: / / metacpan .org / pod / Sort::Naturally),
Sort::Versions (https: / / metacpan . org / pod / Sort::Versions), CPAN::Version
(https://metacpan.org/pod/CPAN::Version).

• PHP has a built-in function natsort (https://www.php.net/manual/en/function.
natsort.php).

• NodeJS’s natural-sort package (https://www.npmjs.com/package/natural-sort).

• In zsh, the glob modifier (http://zsh.sourceforge.net/Doc/Release/Expansion.
html#Glob-Qualifiers) *(n) will expand to files in natural sort order.

• When writing C programs, the GNU libc library (glibc) provides the strvercmp(3)
(http://man7.org/linux/man-pages/man3/strverscmp.3.html) function to com-
pare two strings, and versionsort(3) (http://man7.org/linux/man-pages/man3/
versionsort.3.html) function to compare two directory entries (despite the names,
they are not identical to GNU coreutils’ version sort ordering).

• Using Debian’s sorting algorithm in:

• python: Stack Overflow Example #4957741 (https://stackoverflow.com/a/
4957741).

• NodeJS: deb-version-compare (https: / / www . npmjs . com / package /

deb-version-compare).

30.4.4 Related Source code

• Debian’s code which splits a version string into epoch/upstream_version/debian_revision
parts: parsehelp.c:parseversion() (https://git.dpkg.org/cgit/dpkg/dpkg.git/
tree/lib/dpkg/parsehelp.c#n191).

• Debian’s code which performs the upstream_version comparison: version.c (https://
git.dpkg.org/cgit/dpkg/dpkg.git/tree/lib/dpkg/version.c#n140).

• GNULIB code (used by GNU coreutils) which performs the version comparison:
filevercmp.c (https: / / git . savannah . gnu . org / cgit / gnulib . git / tree / lib /
filevercmp.c).

https://metacpan.org/pod/Sort::Naturally
https://metacpan.org/pod/Sort::Versions
https://metacpan.org/pod/CPAN::Version
https://metacpan.org/pod/CPAN::Version
https://www.php.net/manual/en/function.natsort.php
https://www.php.net/manual/en/function.natsort.php
https://www.npmjs.com/package/natural-sort
http://zsh.sourceforge.net/Doc/Release/Expansion.html#Glob-Qualifiers
http://zsh.sourceforge.net/Doc/Release/Expansion.html#Glob-Qualifiers
http://man7.org/linux/man-pages/man3/strverscmp.3.html
http://man7.org/linux/man-pages/man3/strverscmp.3.html
http://man7.org/linux/man-pages/man3/versionsort.3.html
http://man7.org/linux/man-pages/man3/versionsort.3.html
https://stackoverflow.com/a/4957741
https://stackoverflow.com/a/4957741
https://www.npmjs.com/package/deb-version-compare
https://www.npmjs.com/package/deb-version-compare
https://git.dpkg.org/cgit/dpkg/dpkg.git/tree/lib/dpkg/parsehelp.c#n191
https://git.dpkg.org/cgit/dpkg/dpkg.git/tree/lib/dpkg/parsehelp.c#n191
https://git.dpkg.org/cgit/dpkg/dpkg.git/tree/lib/dpkg/version.c#n140
https://git.dpkg.org/cgit/dpkg/dpkg.git/tree/lib/dpkg/version.c#n140
https://git.savannah.gnu.org/cgit/gnulib.git/tree/lib/filevercmp.c
https://git.savannah.gnu.org/cgit/gnulib.git/tree/lib/filevercmp.c

255

31 Opening the Software Toolbox

An earlier version of this chapter appeared in the What’s GNU? column of the June 1994
Linux Journal (https://www.linuxjournal.com/article.php?sid=2762). It was written
by Arnold Robbins.

Toolbox Introduction

This month’s column is only peripherally related to the GNU Project, in that it describes a
number of the GNU tools on your GNU/Linux system and how they might be used. What
it’s really about is the “Software Tools” philosophy of program development and usage.

The software tools philosophy was an important and integral concept in the initial design
and development of Unix (of which Linux and GNU are essentially clones). Unfortunately,
in the modern day press of Internetworking and flashy GUIs, it seems to have fallen by the
wayside. This is a shame, since it provides a powerful mental model for solving many kinds
of problems.

Many people carry a Swiss Army knife around in their pants pockets (or purse). A
Swiss Army knife is a handy tool to have: it has several knife blades, a screwdriver, tweezers,
toothpick, nail file, corkscrew, and perhaps a number of other things on it. For the everyday,
small miscellaneous jobs where you need a simple, general purpose tool, it’s just the thing.

On the other hand, an experienced carpenter doesn’t build a house using a Swiss Army
knife. Instead, he has a toolbox chock full of specialized tools—a saw, a hammer, a screw-
driver, a plane, and so on. And he knows exactly when and where to use each tool; you
won’t catch him hammering nails with the handle of his screwdriver.

The Unix developers at Bell Labs were all professional programmers and trained com-
puter scientists. They had found that while a one-size-fits-all program might appeal to a
user because there’s only one program to use, in practice such programs are

a. difficult to write,

b. difficult to maintain and debug, and

c. difficult to extend to meet new situations.

Instead, they felt that programs should be specialized tools. In short, each program
“should do one thing well.” No more and no less. Such programs are simpler to design,
write, and get right—they only do one thing.

Furthermore, they found that with the right machinery for hooking programs together,
that the whole was greater than the sum of the parts. By combining several special purpose
programs, you could accomplish a specific task that none of the programs was designed
for, and accomplish it much more quickly and easily than if you had to write a special
purpose program. We will see some (classic) examples of this further on in the column.
(An important additional point was that, if necessary, take a detour and build any software
tools you may need first, if you don’t already have something appropriate in the toolbox.)

I/O Redirection

Hopefully, you are familiar with the basics of I/O redirection in the shell, in particular the
concepts of “standard input,” “standard output,” and “standard error”. Briefly, “standard

https://www.linuxjournal.com/article.php?sid=2762
https://www.linuxjournal.com/article.php?sid=2762

Chapter 31: Opening the Software Toolbox 256

input” is a data source, where data comes from. A program should not need to either know
or care if the data source is a disk file, a keyboard, a magnetic tape, or even a punched
card reader. Similarly, “standard output” is a data sink, where data goes to. The program
should neither know nor care where this might be. Programs that only read their standard
input, do something to the data, and then send it on, are called filters, by analogy to filters
in a water pipeline.

With the Unix shell, it’s very easy to set up data pipelines:

program_to_create_data | filter1 | ... | filterN > final.pretty.data

We start out by creating the raw data; each filter applies some successive transformation
to the data, until by the time it comes out of the pipeline, it is in the desired form.

This is fine and good for standard input and standard output. Where does the standard
error come in to play? Well, think about filter1 in the pipeline above. What happens if it
encounters an error in the data it sees? If it writes an error message to standard output, it
will just disappear down the pipeline into filter2’s input, and the user will probably never
see it. So programs need a place where they can send error messages so that the user will
notice them. This is standard error, and it is usually connected to your console or window,
even if you have redirected standard output of your program away from your screen.

For filter programs to work together, the format of the data has to be agreed upon.
The most straightforward and easiest format to use is simply lines of text. Unix data
files are generally just streams of bytes, with lines delimited by the ASCII LF (Line Feed)
character, conventionally called a “newline” in the Unix literature. (This is ’\n’ if you’re
a C programmer.) This is the format used by all the traditional filtering programs. (Many
earlier operating systems had elaborate facilities and special purpose programs for managing
binary data. Unix has always shied away from such things, under the philosophy that it’s
easiest to simply be able to view and edit your data with a text editor.)

OK, enough introduction. Let’s take a look at some of the tools, and then we’ll see how
to hook them together in interesting ways. In the following discussion, we will only present
those command line options that interest us. As you should always do, double check your
system documentation for the full story.

The who Command

The first program is the who command. By itself, it generates a list of the users who are
currently logged in. Although I’m writing this on a single-user system, we’ll pretend that
several people are logged in:

$ who

a arnold console Jan 22 19:57

a miriam ttyp0 Jan 23 14:19(:0.0)

a bill ttyp1 Jan 21 09:32(:0.0)

a arnold ttyp2 Jan 23 20:48(:0.0)

Here, the ‘$’ is the usual shell prompt, at which I typed ‘who’. There are three people
logged in, and I am logged in twice. On traditional Unix systems, user names are never
more than eight characters long. This little bit of trivia will be useful later. The output of
who is nice, but the data is not all that exciting.

Chapter 31: Opening the Software Toolbox 257

The cut Command

The next program we’ll look at is the cut command. This program cuts out columns or
fields of input data. For example, we can tell it to print just the login name and full name
from the /etc/passwd file. The /etc/passwd file has seven fields, separated by colons:

arnold:xyzzy:2076:10:Arnold D. Robbins:/home/arnold:/bin/bash

To get the first and fifth fields, we would use cut like this:

$ cut -d: -f1,5 /etc/passwd

a root:Operator

...

a arnold:Arnold D. Robbins

a miriam:Miriam A. Robbins

...

With the -c option, cut will cut out specific characters (i.e., columns) in the input lines.
This is useful for input data that has fixed width fields, and does not have a field separator.
For example, list the Monday dates for the current month:

$ cal | cut -c 3-5

a Mo
a
a 6

a 13

a 20

a 27

The sort Command

Next we’ll look at the sort command. This is one of the most powerful commands on a
Unix-style system; one that you will often find yourself using when setting up fancy data
plumbing.

The sort command reads and sorts each file named on the command line. It then merges
the sorted data and writes it to standard output. It will read standard input if no files are
given on the command line (thus making it into a filter). The sort is based on the character
collating sequence or based on user-supplied ordering criteria.

The uniq Command

Finally (at least for now), we’ll look at the uniq program. When sorting data, you will often
end up with duplicate lines, lines that are identical. Usually, all you need is one instance
of each line. This is where uniq comes in. The uniq program reads its standard input. It
prints only one copy of each repeated line. It does have several options. Later on, we’ll use
the -c option, which prints each unique line, preceded by a count of the number of times
that line occurred in the input.

Putting the Tools Together

Now, let’s suppose this is a large ISP server system with dozens of users logged in. The
management wants the system administrator to write a program that will generate a sorted

Chapter 31: Opening the Software Toolbox 258

list of logged in users. Furthermore, even if a user is logged in multiple times, his or her
name should only show up in the output once.

The administrator could sit down with the system documentation and write a C program
that did this. It would take perhaps a couple of hundred lines of code and about two hours
to write it, test it, and debug it. However, knowing the software toolbox, the administrator
can instead start out by generating just a list of logged on users:

$ who | cut -c1-8

a arnold

a miriam

a bill

a arnold

Next, sort the list:

$ who | cut -c1-8 | sort

a arnold

a arnold

a bill

a miriam

Finally, run the sorted list through uniq, to weed out duplicates:

$ who | cut -c1-8 | sort | uniq

a arnold

a bill

a miriam

The sort command actually has a -u option that does what uniq does. However, uniq
has other uses for which one cannot substitute ‘sort -u’.

The administrator puts this pipeline into a shell script, and makes it available for all the
users on the system (‘#’ is the system administrator, or root, prompt):

cat > /usr/local/bin/listusers

who | cut -c1-8 | sort | uniq

^D

chmod +x /usr/local/bin/listusers

There are four major points to note here. First, with just four programs, on one command
line, the administrator was able to save about two hours worth of work. Furthermore, the
shell pipeline is just about as efficient as the C program would be, and it is much more
efficient in terms of programmer time. People time is much more expensive than computer
time, and in our modern “there’s never enough time to do everything” society, saving two
hours of programmer time is no mean feat.

Second, it is also important to emphasize that with the combination of the tools, it
is possible to do a special purpose job never imagined by the authors of the individual
programs.

Third, it is also valuable to build up your pipeline in stages, as we did here. This allows
you to view the data at each stage in the pipeline, which helps you acquire the confidence
that you are indeed using these tools correctly.

Finally, by bundling the pipeline in a shell script, other users can use your command,
without having to remember the fancy plumbing you set up for them. In terms of how you
run them, shell scripts and compiled programs are indistinguishable.

Chapter 31: Opening the Software Toolbox 259

After the previous warm-up exercise, we’ll look at two additional, more complicated
pipelines. For them, we need to introduce two more tools.

The first is the tr command, which stands for “transliterate.” The tr command works
on a character-by-character basis, changing characters. Normally it is used for things like
mapping upper case to lower case:

$ echo ThIs ExAmPlE HaS MIXED case! | tr ’[:upper:]’ ’[:lower:]’

a this example has mixed case!

There are several options of interest:

-c work on the complement of the listed characters, i.e., operations apply to char-
acters not in the given set

-d delete characters in the first set from the output

-s squeeze repeated characters in the output into just one character.

We will be using all three options in a moment.

The other command we’ll look at is comm. The comm command takes two sorted input
files as input data, and prints out the files’ lines in three columns. The output columns
are the data lines unique to the first file, the data lines unique to the second file, and the
data lines that are common to both. The -1, -2, and -3 command line options omit the
respective columns. (This is non-intuitive and takes a little getting used to.) For example:

$ cat f1

a 11111

a 22222

a 33333

a 44444

$ cat f2

a 00000

a 22222

a 33333

a 55555

$ comm f1 f2

a 00000

a 11111

a 22222

a 33333

a 44444

a 55555

The file name - tells comm to read standard input instead of a regular file.

Now we’re ready to build a fancy pipeline. The first application is a word frequency
counter. This helps an author determine if he or she is over-using certain words.

The first step is to change the case of all the letters in our input file to one case. “The”
and “the” are the same word when doing counting.

$ tr ’[:upper:]’ ’[:lower:]’ < whats.gnu | ...

The next step is to get rid of punctuation. Quoted words and unquoted words should
be treated identically; it’s easiest to just get the punctuation out of the way.

$ tr ’[:upper:]’ ’[:lower:]’ < whats.gnu | tr -cd ’[:alnum:]_ \n’ | ...

Chapter 31: Opening the Software Toolbox 260

The second tr command operates on the complement of the listed characters, which are
all the letters, the digits, the underscore, and the blank. The ‘\n’ represents the newline
character; it has to be left alone. (The ASCII tab character should also be included for
good measure in a production script.)

At this point, we have data consisting of words separated by blank space. The words
only contain alphanumeric characters (and the underscore). The next step is break the data
apart so that we have one word per line. This makes the counting operation much easier,
as we will see shortly.

$ tr ’[:upper:]’ ’[:lower:]’ < whats.gnu | tr -cd ’[:alnum:]_ \n’ |

> tr -s ’ ’ ’\n’ | ...

This command turns blanks into newlines. The -s option squeezes multiple newline
characters in the output into just one, removing blank lines. (The ‘>’ is the shell’s “secondary
prompt.” This is what the shell prints when it notices you haven’t finished typing in all of
a command.)

We now have data consisting of one word per line, no punctuation, all one case. We’re
ready to count each word:

$ tr ’[:upper:]’ ’[:lower:]’ < whats.gnu | tr -cd ’[:alnum:]_ \n’ |

> tr -s ’ ’ ’\n’ | sort | uniq -c | ...

At this point, the data might look something like this:

60 a

2 able

6 about

1 above

2 accomplish

1 acquire

1 actually

2 additional

The output is sorted by word, not by count! What we want is the most frequently used
words first. Fortunately, this is easy to accomplish, with the help of two more sort options:

-n do a numeric sort, not a textual one

-r reverse the order of the sort

The final pipeline looks like this:

$ tr ’[:upper:]’ ’[:lower:]’ < whats.gnu | tr -cd ’[:alnum:]_ \n’ |

> tr -s ’ ’ ’\n’ | sort | uniq -c | sort -n -r

a 156 the

a 60 a

a 58 to

a 51 of

a 51 and

...

Whew! That’s a lot to digest. Yet, the same principles apply. With six commands,
on two lines (really one long one split for convenience), we’ve created a program that does
something interesting and useful, in much less time than we could have written a C program
to do the same thing.

Chapter 31: Opening the Software Toolbox 261

A minor modification to the above pipeline can give us a simple spelling checker! To
determine if you’ve spelled a word correctly, all you have to do is look it up in a dictionary. If
it is not there, then chances are that your spelling is incorrect. So, we need a dictionary. The
conventional location for a dictionary is /usr/dict/words. On my GNU/Linux system,1

this is a sorted, 45,402 word dictionary.

Now, how to compare our file with the dictionary? As before, we generate a sorted list
of words, one per line:

$ tr ’[:upper:]’ ’[:lower:]’ < whats.gnu | tr -cd ’[:alnum:]_ \n’ |

> tr -s ’ ’ ’\n’ | sort -u | ...

Now, all we need is a list of words that are not in the dictionary. Here is where the comm
command comes in.

$ tr ’[:upper:]’ ’[:lower:]’ < whats.gnu | tr -cd ’[:alnum:]_ \n’ |

> tr -s ’ ’ ’\n’ | sort -u |

> comm -23 - /usr/dict/words

The -2 and -3 options eliminate lines that are only in the dictionary (the second file),
and lines that are in both files. Lines only in the first file (standard input, our stream of
words), are words that are not in the dictionary. These are likely candidates for spelling
errors. This pipeline was the first cut at a production spelling checker on Unix.

There are some other tools that deserve brief mention.

grep search files for text that matches a regular expression

wc count lines, words, characters

tee a T-fitting for data pipes, copies data to files and to standard output

sed the stream editor, an advanced tool

awk a data manipulation language, another advanced tool

The software tools philosophy also espoused the following bit of advice: “Let someone
else do the hard part.” This means, take something that gives you most of what you need,
and then massage it the rest of the way until it’s in the form that you want.

To summarize:

1. Each program should do one thing well. No more, no less.

2. Combining programs with appropriate plumbing leads to results where the whole is
greater than the sum of the parts. It also leads to novel uses of programs that the
authors might never have imagined.

3. Programs should never print extraneous header or trailer data, since these could get
sent on down a pipeline. (A point we didn’t mention earlier.)

4. Let someone else do the hard part.

5. Know your toolbox! Use each program appropriately. If you don’t have an appropriate
tool, build one.

All the programs discussed are available as described in GNU core utilities (https://
www.gnu.org/software/coreutils/coreutils.html).

1 Redhat Linux 6.1, for the November 2000 revision of this article.

https://www.gnu.org/software/coreutils/coreutils.html
https://www.gnu.org/software/coreutils/coreutils.html

Chapter 31: Opening the Software Toolbox 262

None of what I have presented in this column is new. The Software Tools philosophy
was first introduced in the book Software Tools, by Brian Kernighan and P.J. Plauger
(Addison-Wesley, ISBN 0-201-03669-X). This book showed how to write and use software
tools. It was written in 1976, using a preprocessor for FORTRAN named ratfor (RATional
FORtran). At the time, C was not as ubiquitous as it is now; FORTRAN was. The last
chapter presented a ratfor to FORTRAN processor, written in ratfor. ratfor looks an
awful lot like C; if you know C, you won’t have any problem following the code.

In 1981, the book was updated and made available as Software Tools in Pascal (Addison-
Wesley, ISBN 0-201-10342-7). Both books are still in print and are well worth reading if
you’re a programmer. They certainly made a major change in how I view programming.

The programs in both books are available from Brian Kernighan’s home page (https://
www.cs.princeton.edu/~bwk/). For a number of years, there was an active Software Tools
Users Group, whose members had ported the original ratfor programs to essentially every
computer system with a FORTRAN compiler. The popularity of the group waned in the
middle 1980s as Unix began to spread beyond universities.

With the current proliferation of GNU code and other clones of Unix programs, these
programs now receive little attention; modern C versions are much more efficient and do
more than these programs do. Nevertheless, as exposition of good programming style, and
evangelism for a still-valuable philosophy, these books are unparalleled, and I recommend
them highly.

Acknowledgment: I would like to express my gratitude to Brian Kernighan of Bell Labs,
the original Software Toolsmith, for reviewing this column.

https://www.cs.princeton.edu/~bwk/
https://www.cs.princeton.edu/~bwk/

263

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/

Appendix A: GNU Free Documentation License 264

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: GNU Free Documentation License 265

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix A: GNU Free Documentation License 266

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: GNU Free Documentation License 267

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: GNU Free Documentation License 268

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 269

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 270

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

271

Index

!
! . 161
!= . 161

%
% . 163
%b . 155
%q . 155

&
& . 164

*
* . 163

+
+ . 163
+page_range . 23

–
- . 163, 205
- and Unix rm . 118
‘-’, removing files beginning with 118
-- . 2
--across . 24
--additional-suffix . 36
--address-radix . 16
--adjustment . 212
--all 84, 85, 140, 144, 175, 185, 195, 196
--all-repeated . 57
--almost-all . 85
--apparent-size . 144
--append . 165
--archive . 101
--attributes-only . 101
--author . 87
--auto-reference . 63
--backup . 3, 101, 113, 116, 124
--base16 . 20
--base2lsbf . 20
--base2msbf . 20
--base32 . 20
--base32hex . 20
--base64 . 19
--base64url . 20
--batch-size . 50
--before . 13
--binary . 43
--block-size . 5, 140, 144

--block-size=size . 3
--body-numbering . 14
--boot . 185
--bourne-shell . 99
--break-file . 61
--buffer-size . 51
--bytes 28, 29, 30, 34, 41, 69, 144
--c-shell . 99
--cached=mode . 148
--canonicalize . 130
--canonicalize-existing 130, 172
--canonicalize-missing 130, 172
--changes . 133, 135, 137
--characters . 69
--chars . 41
--chdir . 205
--check . 46
--check-chars . 58
--classify . 93
--color . 93
--columns . 24
--compare . 113
--complement . 70
--compute . 200
--context 91, 106, 115, 117, 128, 129, 183
--count . 57, 186
--count-links . 145
--crown-margin . 22
--csh . 99
--data . 152
--date . 138, 191
--dead . 185
--debug . 191, 206, 220
--decode . 19
--delimiter . 70, 220
--delimiters . 71
--dereference 87, 102, 133, 135, 145, 148, 199
--dereference-args . 144
--dereference-command-line 86
--dereference-command-line-symlink-to-dir . .86
--dictionary-order . 47
--digits . 38
--dir . 117
--directory . 86, 113, 125, 171
--dired . 87
--double-space . 24
--dry-run . 171
--echo . 54
--elide-empty-files . 36, 39
--endian . 16
--equal-width . 225
--error . 214
--escape . 97
--exact . 121
--exclude-from=file . 147

Index 272

--exclude-type . 143
--exclude=pattern . 147
--expand-tabs . 25
--field . 220
--field-separator . 51
--fields . 69
--file . 176, 191
--file-system . 148, 152
--file-type . 93
--files0-from=file 41, 49, 145
--filter . 35
--first-line-number . 26
--flag-truncation . 64
--follow . 31
--footer-numbering . 14
--force 101, 116, 117, 120, 125
--foreground . 215
--form-feed . 25
--format 17, 89, 92, 94, 220, 225
--format=format . 148
--format=roff . 64
--format=tex . 65
--from . 133, 220
--from-unit . 220
--full-time . 88
--gap-size . 63
--general-numeric-sort . 47
--goal . 23
--group . 57, 113, 183
--group-directories-first 86
--grouping . 220
--groups . 183, 202
--hardware-platform . 196
--head-count . 55
--header . 25, 73, 220
--header-numbering . 14
--header=N . 220
--heading . 185
--help . 2
--hex-suffixes . 36
--hide-control-chars . 97
--hide=pattern . 86
--human-numeric-sort . 48
--human-readable 5, 89, 140, 145
--hyperlink . 93
--ignore . 195
--ignore-backups . 86
--ignore-case . 47, 57, 61, 73
--ignore-environment . 205
--ignore-fail-on-non-empty 131
--ignore-file . 61
--ignore-garbage . 19
--ignore-interrupts . 165
--ignore-leading-blanks . 47
--ignore-missing . 44
--ignore-nonprinting . 48
--ignore=pattern . 86
--indent . 26

--indicator-style . 93, 94
--initial . 83
--inode . 89
--inodes . 141, 145
--input . 214
--input-range . 55
--interactive 102, 116, 117, 125
--invalid . 221
--io-blocks . 153
--iso-8601[=timespec] . 191
--iterations=number . 120
--join-blank-lines . 15
--join-lines . 25
--keep-files . 38
--kernel-name . 196
--kernel-release . 196
--kernel-version . 196
--key . 50
--kibibytes . 94
--kill-after . 215
--length . 25, 43
--line-bytes . 34
--line-increment . 14
--lines . 29, 32, 34, 41
--link . 102
--literal . 97
--local . 141
--logical . 125, 173, 175
--login . 185
--lookup . 185
--machine . 196
--macro-name . 64
--max-depth=depth . 144
--max-line-length . 41
--max-unchanged-stats . 32
--merge . 25, 47
--mesg . 186
--message . 186
--mode . 114, 127, 128, 129
--month-sort . 48
--multiple . 168
--name . 183
--no-clobber . 102, 116
--no-create . 138, 152
--no-dereference 102, 125, 133, 135, 138, 145,

199
--no-file-warnings . 26
--no-group . 89
--no-newline . 130
--no-preserve-root 118, 134, 135, 137, 199
--no-renumber . 15
--no-symlinks . 173
--no-sync . 141
--no-target-directory 8, 105, 114, 117, 126
--nodename . 196
--null . 144, 181, 205
--number . 12, 35
--number-format . 15

Index 273

--number-lines . 26
--number-nonblank . 12
--number-separator . 15
--number-width . 15
--numeric-sort . 48
--numeric-suffixes . 35
--numeric-uid-gid . 90
--omit-header . 27
--omit-pagination . 27
--one-file-system 106, 118, 147
--only-delimited . 70
--only-file . 61
--operating-system . 196
--output . 50, 55, 141, 214
--output-delimiter . 70
--output-duplicates . 17
--output-error . 165
--output-tabs . 25
--owner . 114
--padding . 221
--page_width . 27
--pages=page_range . 23
--parallel . 52
--parents . 104, 127, 131
--physical . 125, 173, 175
--pid . 32
--portability . 142, 170
--prefix . 38
--preserve . 102
--preserve-context . 114
--preserve-root 118, 133, 135, 137, 199
--preserve-status . 215
--preserve-timestamps . 114
--print-database . 99
--print-type . 143
--printf=format . 149
--process . 186
--processor . 196
--quiet 29, 32, 39, 44, 130, 133, 135, 137, 171,

173, 182
--quote-name . 97
--quoting-style . 97
--random-sort . 49
--random-source . 51, 55, 120
--range . 200
--read-bytes . 16
--real . 183
--recursive 87, 104, 118, 134, 136, 137, 199
--reference 134, 135, 137, 139, 153, 192, 199
--references . 62
--reflink[=when] . 104
--regex . 13
--relative . 125
--relative-base . 173
--relative-to . 173
--remove . 121
--remove-destination . 104
--remove=unlink . 121

--remove=wipe . 121
--remove=wipesync . 121
--repeat . 55
--repeated . 57
--retry . 32
--reverse . 49, 91
--rfc-2822 . 192
--rfc-3339=timespec . 192
--rfc-822 . 192
--rfc-email . 192
--right-side-refs . 64
--role . 200
--round . 221
--round=down . 221
--round=from-zero . 221
--round=nearest . 221
--round=towards-zero . 221
--round=up . 221
--runlevel . 186
--save . 176
--section-delimiter . 14
--sentence-regexp . 62
--sep-string . 26
--separate-dirs . 145
--separator . 13, 26, 36, 225
--serial . 71
--set . 192
--sh . 99
--show-all . 12
--show-control-chars . 24, 98
--show-ends . 12
--show-nonprinting . 12, 27
--show-tabs . 12
--si . 5, 91, 142, 146
--signal . 215
--silent 29, 32, 39, 130, 133, 135, 137, 182
--size . 90, 153
--size=bytes . 121
--skip-bytes . 16
--skip-chars . 57
--skip-chdir . 202
--skip-fields . 56
--sleep-interval . 33
--sort . 47, 48, 49, 91, 92
--spaces . 28
--sparse=when . 104
--split-only . 22
--split-string . 206
--squeeze-blank . 12
--stable . 51
--starting-line-number . 15
--status . 44
--strict . 45
--strings . 16
--strip . 114, 173
--strip-program . 114
--strip-trailing-slashes 105, 116
--suffix 3, 105, 114, 116, 126, 168, 172, 221

Index 274

--suffix-format . 38
--suffix-length . 35
--summarize . 146
--suppress-matched . 39
--symbolic . 126
--symbolic-link . 105
--sync . 142
--sysv . 42
--tabs . 83, 84
--tabsize . 94
--tag . 44
--tagged-paragraph . 22
--target-directory 9, 105, 114, 116, 126
--temporary-directory . 51
--terse . 149
--text . 45
--threshold . 146
--time 91, 92, 138, 139, 146, 147, 186
--time-style . 95, 147
--tmpdir . 172
--to . 221
--to-unit . 221
--total . 142, 144
--traditional . 18
--type . 143, 200
--unbuffered . 36
--uniform-spacing . 22
--unique . 52, 58
--universal . 193
--unset . 205
--update . 105, 116
--user . 183, 199, 200
--userspec . 202
--utc . 193
--verbose 29, 33, 36, 106, 115, 116, 118, 121,

126, 128, 130, 131, 134, 135, 137, 199, 216
--version . 2
--version-sort . 49
--warn . 45
--width . 18, 23, 27, 28, 63, 94
--word-regexp . 62
--words . 41
--wrap . 19
--writable . 186
--z85 . 20
--zero 45, 121, 130, 168, 169, 173, 183
--zero-terminated . . 29, 33, 52, 55, 58, 60, 70, 72,

74, 221
-0 . 144, 181, 205
-1 . 58, 73, 92
-2 . 58, 73
-3 . 58
-a . . . 18, 24, 35, 72, 84, 85, 101, 138, 140, 144, 161,

165, 168, 175, 185, 196
-A . 12, 16, 63, 85
-b . . 3, 12, 13, 14, 18, 28, 34, 38, 43, 47, 61, 69, 97,

99, 101, 113, 116, 124, 144, 159, 185
-B . 86, 140, 144

-c 18, 22, 24, 29, 30, 41, 46, 54, 57, 69, 91, 99,
113, 133, 135, 137, 138, 144, 148, 152, 159, 200

-column . 24
-C . 34, 92, 113, 205
-d . . 14, 18, 19, 24, 35, 47, 57, 70, 71, 86, 101, 113,

117, 125, 138, 159, 171, 185, 191, 220
-d depth . 144
-D . 57, 87, 113, 144
-e 12, 25, 36, 73, 130, 154, 160, 172, 214
-ef . 160
-eq . 161
-E . 12, 154
-f 14, 18, 25, 31, 38, 47, 56, 61, 69,
91, 101, 116, 117, 120, 125, 130, 133, 135, 137, 138,

148, 159, 191, 225
-F . 25, 31, 64, 93, 125, 176
-g 23, 47, 63, 88, 113, 160, 176, 183
-ge . 161
-gt . 161
-G . 89, 160, 183
-h . . . 5, 14, 25, 48, 89, 133, 135, 138, 140, 145, 159,

199
-H 10, 86, 102, 134, 136, 141, 145, 185, 199
-i . . . 14, 18, 19, 25, 48, 55, 57, 61, 73, 83, 89, 102,

116, 117, 125, 141, 165, 196, 205, 214
-I . 86, 117
-I[timespec] . 191
-j . 16
-J . 25
-k 5, 38, 50, 94, 141, 145, 160, 215
-l . . 15, 18, 25, 34, 41, 43, 89, 102, 141, 145, 185, 200
-le . 161
-lt . 161
-L 10, 41, 87, 102, 125, 134, 136, 145, 148, 159,

173, 175, 199
-m 25, 41, 47, 94, 114, 127, 128, 129, 130, 139,

145, 172, 186, 196
-M . 48, 64
-n . . . 12, 15, 26, 29, 32, 35, 38, 48, 55, 70, 90, 102,

116, 125, 130, 154, 160, 183, 196, 212
-n number . 120
-ne . 161
-nt . 160
-N . 16, 26, 97, 160
-o . . . 18, 26, 50, 55, 61, 90, 114, 153, 162, 196, 214
-ot . 160
-O . 64, 160
-p 15, 94, 99, 102, 114, 127, 131, 159, 165, 169,

172, 186, 196
-P . . 10, 102, 125, 134, 136, 142, 145, 170, 173, 175,

199
-q 29, 32, 39, 97, 130, 171, 173, 186
-Q . 97
-r 13, 26, 42, 49, 55, 62, 91, 104, 118, 125, 139,

153, 160, 183, 186, 192, 196, 200
-R 49, 64, 87, 104, 118, 134, 136, 137, 192, 199

Index 275

-s 12, 13, 15, 18, 22, 26, 28, 33, 39, 42,
51, 57, 70, 71, 90, 105, 114, 126, 130, 146, 153, 160,

168, 173, 182, 186, 192, 196, 215, 225
-s bytes . 121
-S 3, 16, 26, 51, 62, 91, 105, 114, 116, 126, 145,

159, 206
-S, env and single quotes . 207
-t . . 12, 17, 22, 27, 36, 45, 51, 83, 84, 91, 105, 114,

116, 126, 143, 146, 149, 159, 172, 186, 200
-T . . 12, 27, 51, 65, 94, 105, 114, 117, 126, 143, 186
-u . . . 12, 22, 36, 52, 58, 92, 105, 116, 121, 160, 171,

183, 186, 193, 199, 200, 205
-U . 92
-v . . 12, 15, 17, 27, 29, 33, 92, 106, 115, 116, 118, 121,
126, 128, 130, 131, 134, 135, 137, 196, 199, 206, 216
-V . 49
-w . . . 15, 18, 19, 23, 27, 28, 41, 45, 58, 63, 94, 160,

186, 225
-width . 23
-W . 27, 62
-x 18, 36, 94, 106, 121, 143, 147, 160
-X . 92
-X file . 147
-z . . . 29, 33, 39, 45, 52, 55, 58, 60, 70, 72, 74, 121,

130, 160, 168, 169, 173, 183, 221
-Z 91, 106, 115, 117, 128, 129, 183

/
/ . 163

<
< . 164
<= . 164

=
= . 160, 164
== . 161, 164

>
> . 164
>= . 164

_POSIX2_VERSION 11, 33, 52, 57, 139

\
\(regexp operator . 163
\+ regexp operator . 163
\? regexp operator . 163
\| regexp operator . 163
\c . 155
\ooo . 156
\uhhhh . 156
\Uhhhhhhhh . 156
\xhh . 156

|
| . 164

1
128-bit checksum . 43
16-bit checksum . 42
160-bit checksum . 45

2
224-bit checksum . 45
256-bit checksum . 45

3
384-bit checksum . 45

5
512-bit checksum . 43, 45

A
abbreviations for months . 238
access permission tests . 160
access permissions, changing 136
access time, changing . 138
access timestamp . 110
access timestamp, printing or sorting files by . . 92
access timestamp, show the most recent 147
across columns . 24
across, listing files . 94
adding permissions . 229
addition . 163
ago in date strings . 240
all lines, grouping . 57
all repeated lines, outputting 57
alnum . 80
alpha . 80
alternate ebcdic, converting to 108
always color option . 93
always hyperlink option . 93
always interactive option . 118
am i . 185
am in date strings . 238

Index 276

and operator . 161, 164
append . 109
appending to the output file 109
appropriate privileges 114, 190, 197, 211
arbitrary date strings, debugging 191
arbitrary date strings, parsing 191
arbitrary text, displaying . 154
arch . 195
arithmetic tests . 161
ascii, converting to . 108
ASCII dump of files . 15
atime . 235
atime, changing . 138
atime, printing or sorting files by 92
atime, show the most recent 147
attribute caching . 148
attributes, file . 132
authors of parse_datetime 242
auto color option . 93
auto hyperlink option . 93

B
b for block special file . 129
b2sum . 43
background jobs, stopping at terminal write . . . 178
backslash escapes . 79, 154
backslash sequences for file names 97
backup files, ignoring . 86
backup options . 3
backup suffix . 3
backups, making 3, 101, 113, 116, 124
backups, making only . 100
base32 . 18
base32 encoding . 18, 19
base64 . 19
Base64 decoding . 19
base64 encoding . 19
basename . 168
basenc . 19
baud rate, setting . 181
beeping at input buffer full . 177
beginning of time . 187
beginning of time, for POSIX 241
Bellovin, Steven M. 242
Berets, Jim . 242
Berry, K. 1, 242
binary . 110
binary I/O . 110
binary input files . 43
bind mount . 118, 151
birth time, printing or sorting files by 92
birthtime . 235
BLAKE2 . 43
BLAKE2 hash length . 43
blank . 80
blank lines, numbering . 15
blanks, ignoring leading . 47

block (space-padding) . 108
block size . 3, 107
block size of conversion . 107
block size of input . 106
block size of output . 106
block special check . 159
block special files . 128
block special files, creating . 128
BLOCK_SIZE . 3
BLOCKSIZE . 3
body, numbering . 13
Bourne shell syntax for color setup 99
breaks, cause interrupts . 177
breaks, ignoring . 177
brkint . 177
bs . 107
BSD output . 44
BSD sum . 42
BSD tail . 30
BSD touch compatibility . 138
bsn . 178
btrfs file system type . 143
bugs, reporting . 1
built-in shell commands, conflicts with . . . 129, 148,

154, 155, 159, 175, 211, 217, 218
byte count . 41
byte-swapping . 16, 108

C
c for character special file . 129
C shell syntax for color setup 99
C-s/C-q flow control . 177
calendar date item . 237
calling combined multi-call program 11
canonical file name . 129, 172
canonicalize a file name 129, 172
case folding . 47
case translation . 178
case, ignored in dates . 237
cat . 12
cbreak . 179
cbs . 107
CD-ROM file system type . 143
cdfs file system type . 143
cdtrdsr . 176
change or print terminal settings 175
change SELinux context . 199
changed files, verbosely describing 135
changed owners, verbosely describing 133
changing access permissions 136
changing file attributes . 132
changing file ownership . 132
changing file timestamps . 137
changing group ownership 132, 134
changing security context . 199
changing special mode bits . 230
character classes . 80

Index 277

character count . 41
character size . 176
character special check . 159
character special files . 128
character special files, creating 128
characters, special . 180
chcon . 199
check file types . 158
checking for sortedness . 46
checksum, 128-bit . 43
checksum, 16-bit . 42
checksum, 160-bit . 45
checksum, 224-bit . 45
checksum, 256-bit . 45
checksum, 384-bit . 45
checksum, 512-bit . 43, 45
chgrp . 134
chmod . 136
chown . 132
chroot . 202
cio . 109
cksum . 42
clocal . 176
clock skew . 95, 235
clone . 104
cmspar . 176
cntrl . 80
color database, printing . 99
color setup . 98
color, distinguishing file types with 93
cols . 181
column to wrap data after . 19
columns . 181
COLUMNS . 94, 181
combination settings . 179
combined . 11
combined date and time of day item 239
comm . 58
command-line operands to shuffle 54
commands for controlling processes 217
commands for delaying . 218
commands for exit status . 158
commands for file name manipulation 168
commands for invoking other commands 202
commands for printing text 154
commands for printing the working context . . . 175
commands for printing user information 183
commands for redirection . 165
commands for SELinux context 199
commands for system context 187
commas, outputting between files 94
comments, in dates . 237
common field, joining on . 72
common lines . 58
common options . 2
compare values . 158
comparing sorted files . 58
comparison operators . 164

concatenate and write files . 12
concurrent I/O . 109
conditional executability . 230
conditions . 158
conflicts with shell built-ins 129, 148, 154, 155,

159, 175, 211, 217, 218
connectives, logical . 161, 163
constant parity . 176
context splitting . 37
context, system . 187
control characters, using ‘^c’ 178
control settings . 176
controlling terminal . 110
conv . 108
conversion block size . 107
conversion specifiers, date . 188
conversion specifiers, literal 189
conversion specifiers, time . 187
converting tabs to spaces . 83
converting while copying a file 106
cooked . 179
Coordinated Universal Time 193
copy on write . 104
copying directories recursively 101, 104
copying existing permissions 229
copying files . 12
copying files and directories 100
copying files and setting attributes 112
core utilities . 1
count . 107
count_bytes . 111
COW . 104
cp . 100
crashes and corruption . 152
CRC checksum . 42
cread . 176
creating directories . 127
creating FIFOs (named pipes) 128
creating links (hard only) . 123
creating links (hard or soft) 123
creating output file, avoiding 109
creating output file, requiring 109
creation timestamp, printing or

sorting files by . 92
crn . 178
crown margin . 22
crt . 180
crterase . 178
crtkill . 179
crtscts . 176
csh syntax for color setup . 99
csn . 176
csplit . 37
cstopb . 176
ctime . 235
ctime, printing or sorting by 91
ctime, show the most recent 146
ctlecho . 178

Index 278

current working directory, printing 175
cut . 69
cyclic redundancy check . 42

D
data, erasing . 119
database for color setup, printing 99
date . 187
date and time of day format, ISO 8601 239
date conversion specifiers . 188
date format, ISO 8601 . 238
date input formats . 236
date options . 191
date strings, debugging . 191
date strings, parsing . 191
day in date strings . 240
day of week item . 239
dd . 106
ddrescue . 111
debugging date strings . 191
debugging, env -S . 207
dec . 180
decctlq . 180
Decode base64 data . 19
delay for a specified time . 218
delaying commands . 218
deleting characters . 82
dereferencing symbolic links 124
descriptor follow option . 31
destination directory . . 8, 9, 105, 114, 116, 117, 126
destinations, multiple output 165
device file, disk . 140
df . 140
DF_BLOCK_SIZE . 3
diagnostic . 199
dictionary order . 47
differing lines . 58
digit . 80
dir . 98
dircolors . 98
direct . 109
direct I/O . 109
directories, copying . 100
directories, copying recursively 101, 104
directories, creating . 127
directories, creating with given attributes 113
directories, removing . 117
directories, removing (recursively) 118
directories, removing empty 131
directory . 109
directory check . 159
directory components, printing 169
directory deletion, ignoring failures 131
directory deletion, reporting 131
directory I/O . 109
directory listing . 85
directory listing, brief . 98

directory listing, recursive . 87
directory listing, verbose . 98
directory order, listing by . 91
directory, creating temporary 170
directory, stripping from file names 168
dired Emacs mode support . 87
dirname . 169
disabling special characters 180
disambiguating group names and IDs 7
discard . 180
discarding file cache . 110
disk allocation . 90
disk device file . 140
disk usage . 140
disk usage by file system . 140
disk usage for files . 143
disks, failing . 111
displacement of dates . 240
displaying text . 154
displaying value of a symbolic link 129
division . 163
do nothing, successfully . 158
do nothing, unsuccessfully . 158
DOS file system . 143
double spacing . 24
down columns . 24
drain . 181
dsusp . 180
dsync . 109
DTR/DSR flow control . 176
du . 143
DU_BLOCK_SIZE . 3
DVD file system type . 143

E
ebcdic, converting to . 108
echo . 154, 178
echoctl . 178
echoe . 178
echok . 178
echoke . 179
echonl . 178
echoprt . 178
effective user and group IDs, printing 183
effective user ID, printing . 184
Eggert, Paul . 242
eight-bit characters . 176, 179
eight-bit input . 177
ek . 179
empty files, creating . 137
empty lines, numbering . 15
endianness . 16
entire files, output of . 12
env . 203
env -S, and single quotes . 207
env -S, debugging . 207
env in scripts . 206

Index 279

environment variables, printing 181
environment, printing . 204
environment, running a program

in a modified . 203
eof . 180
eol . 180
eol2 . 180
epoch, for POSIX . 241
epoch, seconds since . 187
equal string check . 160, 161
equivalence classes . 81
erase . 180
erasing data . 119
error messages, omitting 133, 135, 137
evaluation of expressions . 162
even parity . 176
evenp . 179
exabyte, definition of . 5
examples of date . 193
examples of expr . 164
exbibyte, definition of . 5
excl . 109
excluding files from du . 147
executable file check . 160
executables and file type, marking 93
execute/search permission . 227
execute/search permission, symbolic 229
existence-of-file check . 160
existing backup method . 3
exit status commands . 158
exit status of chroot . 203
exit status of env . 206
exit status of expr . 162
exit status of false . 158
exit status of ls . 85
exit status of mktemp . 172
exit status of nice . 212
exit status of nohup . 213
exit status of pathchk . 170
exit status of printenv . 182
exit status of realpath . 173
exit status of runcon . 201
exit status of sort . 47
exit status of stdbuf . 215
exit status of test . 159
exit status of timeout . 216
exit status of true . 158
exit status of tty . 182
expand . 83
expr . 162
expression evaluation . 158, 162
expressions, numeric . 163
expressions, string . 162
ext2 file system type . 143
ext3 file system type . 143
ext4 file system type . 143
extended attributes, xattr 113, 115

extension, sorting files by . 92
extproc . 179

F
factor . 219
failure exit status . 158
false . 158
fat file system file . 143
fdatasync . 109
ffn . 178
field separator character . 51
fields, padding numeric . 189
FIFOs, creating . 128
file attributes, changing . 132
file characteristic tests . 160
file contents, dumping unambiguously 15
file information, preserving . 103
file information, preserving, extended

attributes, xattr . 102
file mode bits, numeric . 232
file name manipulation . 168
file names, canonicalization 172
file names, checking validity and portability . . . 169
file names, creating temporary 170
file names, stripping directory and suffix 168
file offset radix . 16
file ownership, changing . 132
file sizes . 144
file space usage . 143
file status . 148
file system disk usage . 140
file system sizes . 140
file system space, retrieving current

data more slowly . 142
file system space, retrieving old

data more quickly . 141
file system status . 148
file system types, limiting

output to certain . 141, 143
file system types, printing . 143
file systems . 148
file systems and hard links . 123
file systems, omitting copying to different 106
file timestamp resolution . 235
file timestamps, changing . 137
file type and executables, marking 93
file type tests . 159
file type, marking . 93, 94
file types . 123
file types, special . 123
file utilities . 1
files beginning with ‘-’, removing 118
files, copying . 100
files, creating . 152
fingerprint, 128-bit . 43
fingerprint, 160-bit . 45
fingerprint, 224-bit . 45

Index 280

fingerprint, 256-bit . 45
fingerprint, 384-bit . 45
fingerprint, 512-bit . 43, 45
first in date strings . 236
first part of files, outputting . 29
fixed-length records, converting to

variable-length . 107
floating point . 5
flow control, hardware . 176
flow control, software . 177
flush . 180
flushing, disabling . 178
flusho . 179
fmt . 22
fold . 27
folding long input lines . 27
footers, numbering . 13
force deletion . 120
formatting file contents . 22
formatting of numbers in seq 225
formatting times . 24, 187
fortnight in date strings . 240
fsync . 109
fullblock . 111

G
general date syntax . 236
general numeric sort . 47
gibibyte, definition of . 5
gigabyte, definition of . 5
giving away permissions . 231
GMT . 193
grand total of disk size, usage and

available space . 142
grand total of disk space . 144
graph . 81
Greenwich Mean Time . 193
group IDs, disambiguating . 7
group names, disambiguating . 7
group owner, default . 227
group ownership of installed files, setting 113
group ownership, changing 132, 134
group, permissions for . 228
groups . 184
growing files . 31

H
hangups, immunity to . 213
hard link check . 160
hard link, defined . 124
hard links . 110
hard links to directories . 125
hard links to symbolic links 126
hard links, counting in du . 145
hard links, creating . 123
hard links, preserving . 101

hardware class . 196
hardware flow control . 176
hardware platform . 196
hardware type . 196
hat notation for control characters 178
head . 29
head of output . 55
headers, numbering . 13
help, online . 2
hex dump of files . 15
holes, copying files with . 104
holes, creating files with . 152
horizontal, listing files . 94
host processor type . 196
hostid . 197
hostname . 196, 197
hour in date strings . 240
human numeric sort . 48
human-readable output 4, 89, 140, 145
hup[cl] . 176
hurd, author, printing . 87
hyperlink, linking to files . 93

I
ibs . 106
icanon . 178
icrnl . 177
id . 183
idle time . 186
IEEE floating point . 5
iexten . 178
if . 106
iflag . 109
ignbrk . 177
igncr . 177
ignore file systems . 140
Ignore garbage in base64 stream 19
ignoring case . 47
ignpar . 177
imaxbel . 177
immunity to hangups . 213
implementation, hardware . 196
indenting lines . 26
index . 163
information, about current users 185
initial part of files, outputting 29
initial tabs, converting . 83
inlcr . 177
inode number, printing . 89
inode usage . 141
inode usage, dereferencing in du 145
inode, and hard links . 124
inodes, written buffered . 152
inpck . 177
input block size . 106
input encoding, UTF-8 . 177
input range to shuffle . 55

Index 281

input settings . 177
input tabs . 25
install . 112
intr . 180
invocation of commands, modified 202
isig . 178
iso9660 file system type . 143
ISO 8601 date and time of day format 239
ISO 8601 date format . 238
ISO/IEC 10646 . 156
ISO9660 file system type . 143
ispeed . 181
istrip . 177
items in date strings . 236
iterations, selecting the number of 120
iuclc . 177
iutf8 . 177
ixany . 177
ixoff . 177
ixon . 177

J
join . 72

K
kernel name . 196
kernel release . 196
kernel version . 196
kibibyte, definition of . 4
kibibytes for file sizes . 145
kibibytes for file system sizes 141
kill . 180, 217
kilobyte, definition of . 4
Knuth, Donald E. 22

L
language, in dates . 237
last day . 191, 240
last in date strings . 236
last modified dates, displaying in du 146
last part of files, outputting . 30
LC_ALL . 46, 85
LC_COLLATE . 46, 56, 58, 74, 164
LC_CTYPE . 47, 48, 156
LC_MESSAGES . 23
LC_NUMERIC . 4, 6, 47, 48, 156
LC_TIME 24, 48, 95, 96, 147, 187
lcase . 180
lcase, converting to . 108
LCASE . 180
lchown . 133, 135
leading directories, creating missing 113
leading directory components, stripping 168
leap seconds 139, 187, 193, 194, 237, 238, 241
left margin . 26

length . 163
limiting output of du . 144
line . 181
line buffered . 214
line count . 41
line numbering . 13
line separator character . 36
line settings of terminal . 175
line-breaking . 22
line-by-line comparison . 58
LINES . 181
link . 123
links, creating . 123
Linux file system types . 143
literal conversion specifiers . 189
litout . 179
ln . 123
ln format for nl . 15
lnext . 180
local file system types . 143
local settings . 178
logging out and continuing to run 213
logical and operator . 161, 164
logical connectives . 161, 163
logical or operator . 162, 164
logical pages, numbering on . 13
login name, printing . 184
login sessions, printing users with 184
login time . 185
logname . 184
long ls format . 89
lower . 81
lowercase, translating to output 177
ls . 85
LS_BLOCK_SIZE . 3
LS_COLORS . 93, 98
lutimes . 138

M
machine type . 196
machine-readable stty output 176
MacKenzie, D. 1
MacKenzie, David . 242
Makefiles, installing programs in 113
manipulating files . 100
manipulation of file names . 168
mark parity . 176
match . 163
matching patterns . 162
md5sum . 43
MD5 . 43
mebibyte, definition of . 5
mebibytes for file sizes . 145
megabyte, definition of . 5
merging files . 70
merging files in parallel . 23
merging sorted files . 47

Index 282

message status . 186
message-digest, 128-bit . 43
message-digest, 160-bit . 45
message-digest, 224-bit . 45
message-digest, 256-bit . 45
message-digest, 384-bit . 45
message-digest, 512-bit . 43, 45
Meyering, J. 1
Meyering, Jim . 242
midnight in date strings . 238
min . 181
minute in date strings . 240
minutes, time zone correction by 238
mkdir . 127
mkfifo . 128
mknod . 128
mktemp . 170
modem control . 176
modes and umask . 231
modes of created directories, setting 127
modes of created FIFOs, setting 128
modification timestamp, sorting files by 91
modified command invocation 202
modified environment, running

a program in a . 203
modify time, changing . 139
month in date strings . 240
month names in date strings 238
months, sorting by . 48
months, written-out . 237
MS-DOS file system . 143
MS-Windows file system . 143
mtime . 235
mtime, changing . 139
mtime-greater-atime file check 160
multicall . 11
multicolumn output, generating 23
multiple changes to permissions 230
multiplication . 163
multipliers after numbers . 111
multithreaded sort . 52
mv . 115

N
name follow option . 31
name of kernel . 196
named pipe check . 159
named pipes, creating . 128
network node name . 196
never interactive option . 117
newer files, copying only . 105
newer files, moving only . 116
newer-than file check . 160
newline echoing after kill . 178
newline, echoing . 178
newline, translating to crlf . 177
newline, translating to return 177

next day . 191, 240
next in date strings . 236
NFS file system type . 143
NFS mounts from BSD to HP-UX 90, 148
nice . 211
niceness . 211
nl . 13, 179
nln . 178
no dereference . 199
no-op . 158
NO NEW PRIVS . 200
noatime . 110
nocache . 110
nocreat . 109
noctty . 110
node name . 196
noerror . 109
noflsh . 178
nofollow . 110
nohup . 213
nohup.out . 213
nolinks . 110
non-directories, copying as special files 101, 104
non-directory suffix, stripping 169
nonblock . 110
nonblocking I/O . 110
nonblocking stty setting . 181
none backup method . 3
none color option . 93
none dd status= . 107
none hyperlink option . 93
none, sorting option for ls . 92
nonempty file check . 160
nonprinting characters, ignoring 48
nonzero-length string check 160
noon in date strings . 238
not-equal string check . 161
notrunc . 109
now in date strings . 240
noxfer dd status= . 107
nproc . 195
ntfs file system file . 143
NTFS file system . 143
number of inputs to merge, nmerge 50
numbered backup method . 3
numbering lines . 13
numbers, written-out . 236
numeric expressions . 163
numeric field padding . 189
numeric modes . 232
numeric operations . 219
numeric sequences . 225
numeric sort . 48
numeric tests . 161
numeric uid and gid . 90
numeric user and group IDs . 90
numfmt . 219

Index 283

O
obs . 106
ocrnl . 177
octal dump of files . 15
octal numbers for file modes 232
od . 15
odd parity . 176
oddp . 179
of . 106
ofdel . 177
ofill . 177
oflag . 109
olcuc . 177
older-than file check . 160
once interactive option . 118
one file system, restricting du to 147
one file system, restricting rm to 118
one-line output format . 142
onlcr . 177
onlret . 177
onocr . 177
operating on characters . 79
operating on sorted files . 46
operating system name . 196
opost . 177
option delimiter . 2
options for date . 191
or operator . 162, 164
ordinal numbers . 236
ospeed . 181
other permissions . 228
output block size . 106
output file name prefix . 34, 38
output file name suffix . 38
output format . 148, 149
output format, portable . 142
output NUL-byte-terminated lines . . . 45, 130, 144,

168, 169, 173, 181, 205
output of entire files . 12
output of parts of files . 29
output settings . 177
output tabs . 25
overwriting of input, allowed 50, 55
owned by effective group ID check 160
owned by effective user ID check 160
owner of file, permissions for 228
owner, default . 227
ownership of installed files, setting 114

P
p for FIFO file . 129
pad character . 177
pad instead of timing for delaying 177
padding of numeric fields . 189
paragraphs, reformatting . 22
parenb . 176
parent directories and cp . 104
parent directories, creating . 127
parent directories, creating missing 113
parent directories, removing 131
parentheses for grouping . 162
parity . 179
parity errors, marking . 177
parity, ignoring . 177
parmrk . 177
parodd . 176
parse_datetime . 236
parsing date strings . 191
parts of files, output of . 29
pass8 . 179
paste . 70
Paterson, R. 1
pathchk . 169
PATH . 203
pattern matching . 162
pebibyte, definition of . 5
permission tests . 160
permissions of installed files, setting 114
permissions, changing access 136
permissions, copying existing 229
permissions, for changing file timestamps 138
permissions, output by ls . 90
petabyte, definition of . 5
phone directory order . 47
pieces, splitting a file into . 34
Pinard, F. 1, 242
pipe fitting . 165
Plass, Michael F. 22
platform, hardware . 196
pm in date strings . 238
portable file names, checking for 169
portable output format . 142
POSIX . 1
POSIX output format . 142
POSIXLY_CORRECT . . 2, 11, 24, 51, 52, 112, 154, 155,

183
POSIXLY_CORRECT, and block size 3
pr . 23
prime factors . 219
print . 81
print machine hardware name 195
print name of current directory 175
print system information . 195
print terminal file name . 182
Print the number of processors 195
printenv . 181
printf . 155

Index 284

printing all or some environment variables 181
printing color database . 99
printing current user information 185
printing current usernames . 184
printing groups a user is in . 184
printing real and effective user

and group IDs . 183
printing text . 154
printing text, commands for 154
printing the current time . 187
printing the effective user ID 184
printing the host identifier . 197
printing the hostname . 197
printing the system uptime and load 197
printing user’s login name . 184
printing, preparing files for . 23
process zero-terminated items . . . 29, 33, 52, 55, 58,

60, 70, 72, 74, 221
processes, commands for controlling 217
progress dd status= . 107
prompting, and ln . 125
prompting, and mv . 115
prompting, and rm . 117
prompts, forcing . 116
prompts, omitting . 116
prterase . 178
ptx . 60
punct . 81
pure numbers in date strings 241
pwd . 175

Q
quit . 180
quoting style . 97

R
radix for file offsets . 16
random seed . 8
random sort . 49
random source for shredding 120
random source for shuffling . 55
random source for sorting . 51
random sources . 8
ranges . 80
raw . 179
read errors, ignoring . 109
read from stdin and write to stdout and files . . 165
read permission . 227
read permission, symbolic . 229
read system call, and holes 104
readable file check . 160
readlink . 129
real user and group IDs, printing 183
realpath . 129, 172
record separator character . 36
recursive directory listing . 87

recursively changing access permissions 137
recursively changing file ownership 134
recursively changing group ownership 136
recursively copying directories 101, 104
redirection . 165
reference file . 199
reformatting paragraph text . 22
regular expression matching 162
regular file check . 159
relations, numeric or string . 163
relative items in date strings 240
release of kernel . 196
relpath . 173
remainder . 163
remote hostname . 185
removing characters . 82
removing empty directories 131
removing files after shredding 121
removing files or directories 117
removing files or directories (via

the unlink syscall) . 131
removing permissions . 229
repeat output values . 55
repeated characters . 80
repeated lines, outputting . 57
repeated output of a string . 157
restricted deletion flag . 227
restricted security context . 200
return, ignoring . 177
return, translating to newline 177
reverse sorting . 49, 91
reversing files . 13
rm . 117
rmdir . 131
rn format for nl . 15
root as default owner . 114
root directory, allow recursive destruction 118
root directory, allow recursive

modification . 134, 135, 137
root directory, disallow recursive destruction . . 118
root directory, disallow

recursive modification 133, 135, 137
root directory, running a

program in a specified . 202
rows . 181
rprnt . 180
RTS/CTS flow control . 176
run commands with bounded time 215
run with security context . 200
runcon . 200
running a program in a

modified environment . 203
running a program in a specified

root directory . 202
rz format for nl . 15

Index 285

S
Salz, Rich . 242
same file check . 160
sane . 179
scheduling, affecting . 211
screen columns . 27
scripts arguments . 206
seconds since the epoch . 187
section delimiters of pages . 14
security context . . . 91, 106, 114, 115, 117, 128, 129,

183
seek . 107
seek_bytes . 111
self-backups . 100
SELinux . 91, 114, 183
SELinux context . 199
SELinux, context . 199
SELinux, restoring security context 117
SELinux, setting/restoring

security context 106, 115, 128, 129
send a signal to processes . 217
sentences and line-breaking . 22
separator for numbers in seq 225
seq . 225
sequence of numbers . 225
set-group-ID . 227
set-group-ID check . 160
set-user-ID . 227
set-user-ID check . 160
setgid . 227
setting permissions . 229
setting the hostname . 197
setting the time . 190
setuid . 227
setup for color . 98
sh syntax for color setup . 99
sha1sum . 45
sha224sum . 45
sha256sum . 45
sha384sum . 45
sha512sum . 45
SHA-1 . 45
SHA-2 . 45
shebang arguments . 206
shell utilities . 1
SHELL environment variable, and color 93, 98
shred . 119
shuf . 54
shuffling files . 54
SI output . 4, 91, 142, 146
signals, specifying . 6
simple backup method . 3
SIMPLE_BACKUP_SUFFIX . 3
single quotes, and env -S . 207
single-column output of files 92
size . 181
size for main memory sorting 51
size of file to shred . 121

size of files, reporting . 90
size of files, sorting files by 91
skip . 107
skip_bytes . 111
sleep . 218
socket check . 159
software flow control . 177
sort . 46
sort field . 50
sort stability . 46, 51
sort’s last-resort comparison 46, 51
sorted files, operations on . 46
sorting files . 46
sorting ls output . 91
space . 81
space parity . 176
sparse . 108
sparse files, copying . 104
sparse files, creating . 152
special characters . 180
special file types . 123
special files . 128
special settings . 181
specifying sets of characters . 79
speed . 181
split . 34
splitting a file into pieces . 34
splitting a file into pieces by context 37
squeezing blank lines . 12
squeezing empty lines . 12
squeezing repeat characters . 82
Stallman, R. 1
standard input . 2
standard output . 2
standard streams, buffering 214
start . 180
stat . 148
status . 107, 180
status time, printing or sorting by 91
status time, show the most recent 146
stdbuf . 214
stick parity . 176
sticky . 227
sticky bit check . 160
stop . 180
stop bits . 176
strftime and date . 187
string constants, outputting . 16
string expressions . 162
string tests . 160
strip directory and suffix from file names 168
stripping non-directory suffix 169
stripping symbol table information 114
stripping trailing slashes 105, 116
stty . 175
substr . 163
subtracting permissions . 229
subtraction . 163

Index 286

successful exit . 158
suffix, stripping from file names 168
sum . 42
summarizing files . 41
superblock, writing . 152
supplementary groups, printing 184
susp . 180
swab (byte-swapping) . 108
swap space, saving text image in 227
swtch . 180
symbol table information, stripping 114
symbol table information,

stripping, program . 114
symbolic (soft) links, creating 123
symbolic link check . 159
symbolic link to directory,

controlling traversal of . 10
symbolic link to directory, never traverse . . 10, 134,

136, 199
symbolic link to directory, traverse each

that is encountered 10, 134, 136, 199
symbolic link to directory, traverse if on

the command line 10, 134, 136, 199
symbolic link, defined . 124
symbolic links and ln . 126
symbolic links and pwd . 175
symbolic links, changing group 135
symbolic links, changing owner 133, 135
symbolic links, changing time 138
symbolic links, copying 101, 102
symbolic links, copying with 105
symbolic links, dereferencing 86, 87
symbolic links, dereferencing in du 145
symbolic links, dereferencing in stat 148
symbolic links, following . 110
symbolic links, permissions of 136
symbolic modes . 228
symlinks, resolution . 172
sync . 110, 152
sync (padding with ASCII NULs) 108
Synchronize cached writes to

persistent storage . 152
synchronize disk and memory 152
synchronized data and metadata I/O 110
synchronized data and metadata

writes, before finishing . 109
synchronized data reads . 109
synchronized data writes, before finishing 109
system context . 187
system information, printing 195
system name, printing . 197
System V sum . 42

T
tab stops, setting . 83
tabn . 178
tabs . 180
tabs to spaces, converting . 83
tac . 13
tagged paragraphs . 22
tail . 30
tandem . 177
target directory 8, 9, 105, 114, 116, 117, 126
tebibyte, definition of . 5
tee . 165
telephone directory order . 47
temporary directory . 51
temporary files and directories 170
terabyte, definition of . 5
terminal check . 159
terminal file name, printing 182
terminal lines, currently used 185
terminal settings . 175
terminal, using color iff . 93
terminal, using hyperlink iff . 93
terse output . 149
test . 158
text . 110
text I/O . 110
text image, saving in swap space 227
text input files . 45
text utilities . 1
text, displaying . 154
text, reformatting . 22
this in date strings . 240
time . 138, 181
time conversion specifiers . 187
time formats . 24, 187
time limit . 215
time of day item . 238
time setting . 190
time style . 95, 147
time units . 216, 218
time zone correction . 238
time zone item . 237, 239
time, printing or setting . 187
TIME_STYLE . 96, 147
timeout . 215
timestamps of installed files, preserving 114
timestamps, changing file . 137
TMPDIR . 47, 51
today in date strings . 240
tomorrow . 191
tomorrow in date strings . 240
topological sort . 66
tostop . 178
total counts . 41
touch . 137
tr . 79
trailing slashes . 9
translating characters . 81

Index 287

true . 158
truncate . 152
truncating output file, avoiding 109
truncating, file sizes . 152
tsort . 66
tty . 182
two-way parity . 176
type size . 17
TZ 24, 95, 138, 151, 185, 187, 193, 241

U
u, and disabling special characters 180
ucase, converting to . 108
umask and modes . 231
uname . 195
unblock . 108
unexpand . 84
Unicode . 156
uniq . 56
unique lines, outputting . 58
uniquify files . 56
uniquifying output . 52
Universal Time . 193
unlink . 131
unprintable characters, ignoring 48
unsorted directory listing . 91
upper . 81
uppercase, translating to lowercase 177
uptime . 197
use time, changing . 138
use time, printing or sorting files by 91, 92
use time, show the most recent 146
user IDs, disambiguating . 7
user information, commands for 183
user name, printing . 184
user names, disambiguating . 7
usernames, printing current 184
users . 184
UTC . 193
utmp . 184, 185

V
valid file names, checking for 169
variable-length records, converting

to fixed-length . 107
vdir . 98
verbose ls format . 89
verifying MD5 checksums 44, 45
version number sort . 49
version number, finding . 2

version of kernel . 196
version, sorting option for ls 92
version-control Emacs variable 3
VERSION_CONTROL 3, 101, 113, 116, 124
vertical sorted files in columns 92
vtn . 178

W
wc . 41
week in date strings . 240
werase . 180
who . 185
who am i . 185
whoami . 184
word count . 41
working context . 175
working directory, printing . 175
wrap data . 19
wrapping long input lines . 27
writable file check . 160
write permission . 227
write permission, symbolic . 229
write, allowed . 186
wtmp . 184, 185

X
xcase . 178
xdigit . 81
xfs file system type . 143
XON/XOFF flow control . 177

Y
year in date strings . 240
yes . 157
yesterday . 191
yesterday in date strings . 240
yottabyte, definition of . 5
Youmans, B. 1

Z
zero-length string check . 160
zettabyte, definition of . 5

	Introduction
	Common options
	Exit status
	Backup options
	Block size
	Floating point numbers
	Signal specifications
	chown, chgrp, chroot, id: Disambiguating user names and IDs
	Sources of random data
	Target directory
	Trailing slashes
	Traversing symlinks
	Treating / specially
	Special built-in utilities
	Standards conformance
	coreutils: Multi-call program

	Output of entire files
	cat: Concatenate and write files
	tac: Concatenate and write files in reverse
	nl: Number lines and write files
	od: Write files in octal or other formats
	base32: Transform data into printable data
	base64: Transform data into printable data
	basenc: Transform data into printable data

	Formatting file contents
	fmt: Reformat paragraph text
	pr: Paginate or columnate files for printing
	fold: Wrap input lines to fit in specified width

	Output of parts of files
	head: Output the first part of files
	tail: Output the last part of files
	split: Split a file into pieces.
	csplit: Split a file into context-determined pieces

	Summarizing files
	wc: Print newline, word, and byte counts
	sum: Print checksum and block counts
	cksum: Print CRC checksum and byte counts
	b2sum: Print or check BLAKE2 digests
	md5sum: Print or check MD5 digests
	sha1sum: Print or check SHA-1 digests
	sha2 utilities: Print or check SHA-2 digests

	Operating on sorted files
	sort: Sort text files
	shuf: Shuffling text
	uniq: Uniquify files
	comm: Compare two sorted files line by line
	ptx: Produce permuted indexes
	General options
	Charset selection
	Word selection and input processing
	Output formatting
	The GNU extensions to ptx

	tsort: Topological sort
	tsort: Background

	Operating on fields
	cut: Print selected parts of lines
	paste: Merge lines of files
	join: Join lines on a common field
	General options
	Pre-sorting
	Working with fields
	Controlling join's field matching
	Header lines
	Union, Intersection and Difference of files

	Operating on characters
	tr: Translate, squeeze, and/or delete characters
	Specifying sets of characters
	Translating
	Squeezing repeats and deleting

	expand: Convert tabs to spaces
	unexpand: Convert spaces to tabs

	Directory listing
	ls: List directory contents
	Which files are listed
	What information is listed
	Sorting the output
	General output formatting
	Formatting file timestamps
	Formatting the file names

	dir: Briefly list directory contents
	vdir: Verbosely list directory contents
	dircolors: Color setup for ls

	Basic operations
	cp: Copy files and directories
	dd: Convert and copy a file
	install: Copy files and set attributes
	mv: Move (rename) files
	rm: Remove files or directories
	shred: Remove files more securely

	Special file types
	link: Make a hard link via the link syscall
	ln: Make links between files
	mkdir: Make directories
	mkfifo: Make FIFOs (named pipes)
	mknod: Make block or character special files
	readlink: Print value of a symlink or canonical file name
	rmdir: Remove empty directories
	unlink: Remove files via the unlink syscall

	Changing file attributes
	chown: Change file owner and group
	chgrp: Change group ownership
	chmod: Change access permissions
	touch: Change file timestamps

	Disk usage
	df: Report file system disk space usage
	du: Estimate file space usage
	stat: Report file or file system status
	sync: Synchronize cached writes to persistent storage
	truncate: Shrink or extend the size of a file

	Printing text
	echo: Print a line of text
	printf: Format and print data
	yes: Print a string until interrupted

	Conditions
	false: Do nothing, unsuccessfully
	true: Do nothing, successfully
	test: Check file types and compare values
	File type tests
	Access permission tests
	File characteristic tests
	String tests
	Numeric tests
	Connectives for test

	expr: Evaluate expressions
	String expressions
	Numeric expressions
	Relations for expr
	Examples of using expr

	Redirection
	tee: Redirect output to multiple files or processes

	File name manipulation
	basename: Strip directory and suffix from a file name
	dirname: Strip last file name component
	pathchk: Check file name validity and portability
	mktemp: Create temporary file or directory
	realpath: Print the resolved file name.
	Realpath usage examples

	Working context
	pwd: Print working directory
	stty: Print or change terminal characteristics
	Control settings
	Input settings
	Output settings
	Local settings
	Combination settings
	Special characters
	Special settings

	printenv: Print all or some environment variables
	tty: Print file name of terminal on standard input

	User information
	id: Print user identity
	logname: Print current login name
	whoami: Print effective user ID
	groups: Print group names a user is in
	users: Print login names of users currently logged in
	who: Print who is currently logged in

	System context
	date: Print or set system date and time
	Time conversion specifiers
	Date conversion specifiers
	Literal conversion specifiers
	Padding and other flags
	Setting the time
	Options for date
	Examples of date

	arch: Print machine hardware name
	nproc: Print the number of available processors
	uname: Print system information
	hostname: Print or set system name
	hostid: Print numeric host identifier
	uptime: Print system uptime and load

	SELinux context
	chcon: Change SELinux context of file
	runcon: Run a command in specified SELinux context

	Modified command invocation
	chroot: Run a command with a different root directory
	env: Run a command in a modified environment
	General options
	-S/--split-string usage in scripts
	Testing and troubleshooting

	-S/--split-string syntax
	Splitting arguments by whitespace
	Escape sequences
	Comments
	Environment variable expansion

	nice: Run a command with modified niceness
	nohup: Run a command immune to hangups
	stdbuf: Run a command with modified I/O stream buffering
	timeout: Run a command with a time limit

	Process control
	kill: Send a signal to processes

	Delaying
	sleep: Delay for a specified time

	Numeric operations
	factor: Print prime factors
	numfmt: Reformat numbers
	General options
	Possible units:
	Examples of using numfmt

	seq: Print numeric sequences

	File permissions
	Structure of File Mode Bits
	Symbolic Modes
	Setting Permissions
	Copying Existing Permissions
	Changing Special Mode Bits
	Conditional Executability
	Making Multiple Changes
	The Umask and Protection

	Numeric Modes
	Operator Numeric Modes
	Directories and the Set-User-ID and Set-Group-ID Bits

	File timestamps
	Date input formats
	General date syntax
	Calendar date items
	Time of day items
	Time zone items
	Combined date and time of day items
	Day of week items
	Relative items in date strings
	Pure numbers in date strings
	Seconds since the Epoch
	Specifying time zone rules
	Authors of parse_datetime

	Version sort ordering
	Version sort overview
	Using version sort in GNU coreutils
	Origin of version sort and differences from natural sort
	Correct/Incorrect ordering and Expected/Unexpected results

	Implementation Details
	Version-sort ordering rules
	Version sort is not the same as numeric sort
	Punctuation Characters
	Punctuation Characters vs letters
	Tilde ~ character
	Version sort uses ASCII order, ignores locale, unicode characters

	Differences from the official Debian Algorithm
	Minus/Hyphen - and Colon : characters
	Additional hard-coded priorities in GNU coreutils' version sort
	Special handling of file extensions

	Advanced Topics
	Comparing two strings using Debian's algorithm
	Reporting bugs or incorrect results
	Other version/natural sort implementations
	Related Source code

	Opening the Software Toolbox
	Toolbox Introduction
	I/O Redirection
	The who Command
	The cut Command
	The sort Command
	The uniq Command
	Putting the Tools Together

	GNU Free Documentation License
	Index

